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Abstract—With the rise of more resourceful unmanned aerial
vehicles (UAVs), their inclusion into robotic sensor networks
(RSNs) is inevitable. The highly mobile nature of UAVs allows
greater monitoring capabilities, making them most suitable for
RSNs. Compared to traditional nodes in RSNs, UAVs suffer
even more from communication disruptions and energy deple-
tion, must often rapidly determine actions for themselves, and
consequently require more autonomy.

Prior work has been done in wireless sensor network
(WSN)/aerial sensor network (ASN) coordination in a few ap-
plications such as protecting critical infrastructure, restoring
communication between nodes, and healing networks, while other
work has been accomplished on using the UAV network for
augmenting the monitoring capabilities of WSNs.

We introduce a novel methodology to integrate UAVs into
RSNs for monitoring purposes by formulating the problem in
the context of a risk management framework (RMF). This
methodology allows a more precise risk feature classification
and a more efficient task allocation for the ground network by
utilizing the monitoring capabilities of the UAVs to informatively
warn the RSN of any incoming events.

We also present a fictitious but credible maritime smuggling
scenario near the Port of Barcelona based on expert knowledge,
and apply the methodology to detect and mitigate maritime
smuggling. The network’s behaviour is traced throughout the
scenario and is repeated with civilian ships to assure that they
are not flagged as smugglers. The applied methodology results in
a successful classification and mitigation of the smuggling activity.

I. INTRODUCTION

Wireless sensor networks (WSNs) have proved themselves
useful with many applications in the military, environmental,
home, and health domains [1]. They are networks of simple
static sensor nodes that forward sensed data to sink nodes.
Such networks suffer from communication disruptions due
to hardware failures or network reconfigurations, and low
resources. Consequently, their lifespans are fundamentally
limited by their efficiency. [2].

One extension, the sensor/actuator network (WSAN), adds
actuator nodes controlled by the sink node to complete the
control loop [3]. WSANs must also confront new issues such
as task allocation [4]. A robotic sensor network (RSN) is a
network where each node is as simple as a single wireless
sensor or as complex as multi-sensor, multi-actuator, highly-
mobile robots [2]. Data is often refined within the network
before being sent to the sink nodes, if sent at all.

RSNs have proved useful for Risk mitigation applications.
[5]-[7] describe a risk management framework (RMF) that

determines risky situations by using a fuzzy inference Sys-
tem (FIS) [8] with inputs of carefully selected risk features,
then presents MRTA risk-mitigating solutions generated by a
multiobjective genetic algorithm to a human operator.

The described RMF uses ground based RSNs. These nodes
usually have longer lifespans and are capable of more robust
mitigation plans but lack the ability to monitor expansive areas,
and the opposite is typically true for their aerial counterparts.
There is synergy by combining both. The ability to warn
the ground network of any developing risky situations is
advantageous since it results in a more efficient MRTA in
terms of resource usage and risk mitigation. Hence, a need
exists to properly integrate UAVs into RSNs.

Our contributions in this paper are as follows: (1) a method-
ology to integrate UAVs into RSNs by formulating the problem
in the context of risk management is explained; (2) a scenario
based on expert knowledge about maritime smuggling is
modeled and simulated; (3) An application of the methodology
to detect and mitigate maritime smuggling is developed.

The proposed methodology allows the design of a RMF
based on a heterogeneous RSN that combines the mitigation
capabilities of ground nodes with the monitoring capabilities
of aerial nodes. It can be summed up in three steps, similar
to those described in [5] and [7]. First, risk features must be
determined to identify risky situations. A second set of risk
features that can harness the additional data gathered by the
aerial nodes is then defined. Finally, a set of risk mitigating
actions are defined for the ground network.

The scenario involves maritime smuggling in an environ-
ment loosely based on the area near Barcelona, where a
bigger vessel rendezvous with three smaller ones to engage
in smuggling activities [9], an event typcially refered to as
Coopering. The scenario is implemented in an agent based
simulation with vessel models using the methodology defined
in [10]. Finally, the methodology is applied to mitigate the
smuggling operation in this scenario.

The paper is structured as follows. Section II presents
related works. Section III presents the proposed methodology
for risk mitigating heterogeneous RSN/aerial sensor network
(ASN). Section IV clarifies the ASN data gathering optimiza-
tion process. Section V presents the simulation environment
and the maritime smuggling scenario. The methodology is
applied for this scenario in Section VI, with the results given
in Section VII. Finally, a conclusion is given in Section VIII.



II. RELATED WORK

The focal point of this paper is not determining coarse
grain anomalous maritime behaviour. Nevertheless, anomaly
detection is crucial to the ASN as a triggering event. The
authors of [11] use hidden markov models (HMM) to identify
maritime pirates, while [12] identifies five features, then use
fused sensor data with a bayesian belief network (BBN) to
detect illicit activity. The study in [13] optimizes the paths of
surveillance assets to gather information on possible anoma-
lous vessels, then use a BBN to identify anomalous behaviour
such as piracy and other illicit activities.

Aerial assets in WSNs have seen applications in connectiv-
ity restoration [14], localization [15], for more efficient WSAN
task allocations [16], in civilian contexts [17], or for critical
infrastructure protection (CIP) [18]. Others have used WSNs
to help coordinate the aerial assets, such as [19].

Falcon et. al. [5] describes an evolving RMF for WSNs.
This RMF forms the basis of the CIP RSN described in [6].
In this framework, nodes capture risk features derived from
raw data streams that are then quantitatively assessed. A risk is
inferred from these local risk values via a FIS. Risk events are
triggered whenever the overall risk of a system unit exceeds
a user-defined threshold.

A set of robotic agents in the RSN that are most able to
accept a mitigation task in the MRTA process is selected via
market-based techniques [20]. The MRTA process is accom-
plished by a multiobjective evolutionary algorithm that yields
a set of Pareto-optimal solutions that describe an allocation
of tasks to all or a subset of the agents in the coalition. One
of these solutions is then picked by an administrator. Tasks
are sent to the proper agents as indicated by the solution that
ultimately results in a mitigation of the identified risk.

III. PROPOSED METHODOLOGY

The methodology explains a method to incorporate UAVs
into the RMF for RSN for greater monitoring capabilities that
lead to a better situational awareness. Situational awareness is
crucial to the RMF as it allows for efficient task allocation
and better risk inference. The UAVs allow the system to focus
itself on situations that require more analysis.

The first step is to define a set of risk features and a
FIS that can detect behaviour that warrants greater attention.
These features work at a coarse level so they should try to be
characteristic of behaviour that might be risky but not strive
to be overly accurate. The purpose of this step is to guide
the ASN to focus on certain areas, since it is inefficient to
keep track of all of the area of interest (Aol) of the RSN.
The process by which the ASN focuses on a certain area is
described in Section IV.

The second step is to define risk features that utilize the data
gathered by the ASN. These risk features along with another
FIS make the final classification of the behaviour as either
risky or not. The data set on the tracked ships is updated
regularly since they are now being thoroughly monitored by
the ASN, which leads to a classification made with the most
current data.

Gene 1 Gene 2 Gene 3
Layer 1 Enabled? Enabled? Enabled?
Layer 2 | Target Cell Target Cell Target Cell
Layer 3 | Target Cell Target Cell Target Cell
Layer 4 Target Cell Target Cell Target Cell
Fig. 1. Monitoring Task Chromosome

The third step is to define applicable data structures, fitness
functions, and operators for the MRTA process so that it can
find efficient mitigating task allocations, as done in [7]. Due
to the availability of more actionable intelligence on the Aol,
a more efficient and optimized MRTA process can take place.

IV. AERIAL NETWORK OPTIMIZATION

The goal of this process is to give monitoring tasks to ASN
nodes for certain regions of the Aol. The Aol is divided into
a grid where each cells can be monitored by one UAV. A
monitoring task is defined as relocating to the center of a
specific cell in order to monitor it. The mobility of UAVs can
be leveraged by allocating any UAV a sequence of such tasks
in order to monitor multiple connected regions.

The MRTA process will utilize the same multiobjective
genetic algorithm approach as used in other MRTA processes
[7]. As such, proper data structures, operators, and fitness
functions must be defined.

Figure 1 presents the chromosome that is used. Each gene
corresponds to a UAV and can either be enabled or disabled,
determining if the UAV is assigned tasks or not. It has a
sequence of cells to monitor for the UAV. A mutation operator
for this chromosome is defined as follows.

C = {06”0707 CG”QJ, ceey Cellnfl’nfl} (1)
A:{Ovl}’ W:fP(C) (2)

Where A is an activation layers, C is the set of all cells in
the Aol, W is the set of cells that require monitoring, and fp is
a function yielding the cells that require monitoring. A gene
can be described as follows.

acA
wy e C
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Where a waypoint constitutes the center of a cell and a
deadline to meet. Too many layers of waypoints constrain the
ASN for too long, while less layers result in repeated costly
MRTA processes. A limit of three has proved to strike a fair
balance between these. The mutation operation can be defined
as follows, where Gene’ is the mutated gene.
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The one-point crossover operator is used [21]. Three fitness
functions are minimized. The first evaluates the energy needs
of the chromosome and is presented in Algorithm 1.

Algorithm 1 Resource Fitness Function

Resources + 0

for each Gene | Gene.a = 1, Gene ¢ Chromosome do
Segment; < Distance (UAV;, Gene.w)
Segment, < Distance (Gene.w;, Gene.w;)
Segment; < Distance (Gene.w;, Gene.ws3)
Path < Segment; + Segment, + Segment;
Resources < Resources + UAV; efficiency * Path

end for

Return Resources

The second fitness function measures network connectivity
and is presented in Algorithm 2. It uses the k-connectivity
metric, defined in Algorithm 3 of [22], that measures the
number of alternative communication paths around a certain
node.

Algorithm 2 Connectivity Fitness Function
Redundancy «+ 0
for each Cell Layer in Gene do
for each Gene|Gene e Chromosome do
Metric +— k-redundancy (UAV;, Cell Layer)
Redundancy <— Redundancy + Metric
end for
end for
Return -1 * Redundancy

The third and final fitness function, Algorithm 3, measures
the relevancy of the paths over the projected area of the tracked
object. The function fp returns the cells that are intersected by
traveling in a straight line between two points.

V. EXPERIMENT DESIGN

An agent-based simulation of a scenario where a smug-
gling event in an environment loosely based on the coast of
Barcelona is used to validate the methodology.

A. Environment Design

The simulation’s environment is based on the Port of
Barcelona and surrounding areas. Actual location names are

Algorithm 3 Relevancy Fitness Function

Path < ()

for each Gene | Gene.a = 1, Gene € Chromosome do
Sy « { Cell | Cell efp(C, UAV;, Genejw;)}
Sy « { Cell | Cell efp(C, Genejwy, Genej.w,)}
Sz « { Cell | Cell efp(C, Genej.wy, Genej.ws)}
Path <—P(LthU51USQU53

end for

Covered Cells « { Cell | Cell € Path, Cell e W}

Return —1 * |Covered| / |W/|

used but the scenario is entirely fictitious. Vessel behaviours
will be modeled following the methodology defined in [10].
Due to space constraints, brief descriptions of the scenario are
presented within this paper.

The first vessel model is the merchant vessel (MV) that
is equipped with an Automatic Identification System (AIS),
and is used in commercial enterprises, such as moving cargo
or commercial fishing. AIS is used to automatically send
identification information and is often used to track ships or to
coordinate their movement to avoid conflicts. These systems
are mandated by the International Maritime Organization for
any qualifying ship. MVs enter at certain points on the
perimeter of the environment corresponding to high traffic
lanes, head for the industrial port or Port Vell, the civilian
section of the Port of Barcelona, and leave after some time
has elapsed. A MV may enter a state known as loitering,
corresponding to real situations where vessels may loiter due
to traffic, breakdowns, waiting for pilotage, etc.

The second vessel model is the ferry. Ferries enter at the
same points as MVs and follow similar behaviour, except that
Ferries always head to Port Vell instead.

The third vessel model is the large private vessel (LPV)
requiring AIS data, such as yachts. LPVs follow approximately
the same behaviour as the two previous vessels, however they
may enter the environment at any point, and may head to either
Port Vell or Port Forum, a nearby marina.

The small recreational vessel (SRV) is the fourth model and
incldue vessels such as speed boats or sailing ships. It is not
required to transmit AIS as it does not meet the requiremetns.
SRVs depart from either Port Vell, Port Olimpic, Port Forum or
Marina de Badalona, the last three being local marinas. SRVs
depart with higher probability during the day towards one of
many predesignated areas, and will switch between these areas
until they decide to return to their source port.

The last two models are the smugglers. The smuggling MV
is based on the MYV, and can enter the a rendez-vous state
from the loitering state, but otherwise acts as a normal MV.
It waits for smuggling SRVs while in the rendez-vous state.
Smuggling SRVs act similarly to SRVs, but head directly for
a Smuggling MV from any of the civilian ports, spend some
time at the rendez-vous, then head back to a civilian port.



B. Scenario

The proposed methodology is used to detect and mitigate
smuggling. Maritime smuggling of weapons, illegal goods
[23], or humans [24] is a real problem for ports around the
world. A common smuggling tactic involves the use of a bigger
vessel to transport the bulk of the smuggled goods, often titled
a “Mother Ship”, that then meets with smaller vessels for
distribution [9]. The meet-up event itself is often referred to
as a rendezvous or a coopering event.

The scenario will be as follows: A smuggling MV will
arrive near the Port of Barcelona and loiter off the coast,
only to rendez-vous with three smuggling SRVs. The MV will
then continue towards the industrial port and the SRVs will
head towards the Marina de Badalona, Port Olimpic, and Port
Fortm. To gauge the accuracy of the smuggling behaviour
classification, this scenario will be repeated with normal SRVs.

VI. REAL-WORLD SCENARIO

The following is an application of the methodology to
mitigate maritime smuggling activities based on coopering.

A. Suspicious Behaviour Detection

The first step is to define the risk features that can be
used to direct the ASN towards possibly risky situations.
The goal is to catch maritime smuggling involving a mother
ship that is an AIS enabled by detecting coopering. This
rendezvous would warrant additional monitoring but does not
necessarily indicate smuggling activity. It could simply be
a chance crossing, bunkering, or a tug-operation, to name a
few legitimate rendezvous-based activities. The risk features
to detect rendezvous are defined as follows.

AIS Off Time (A): This risk feature is defined as 1 —e~19*¢,
where t is the percentage of time the AIS transceiver perceived
to be offline. This feature has the following linguistic terms
and membership functions: Small (Trapezoidal: 0, 0, 0.05,
0.15), Moderate (Trapezoidal: 0.1, 0.15, 0.45, 0.6), and Large
(Trapezoidal: 0.45, 0.6, 1, 1).

Risk of Departing Port (P): An indicator of the risk of the
departing port between 0 and 1 that relies on expert knowl-
edge. Some source ports are known to be less secure than
others [9]. This feature has the following linguistic definitions:
Low (Trapezoidal: 0, 0, 0.25, 0.5), Medium (Triangle: 0.25,
0.5, 0.75), High (Trapezoidal: 0.5, 0.75, 1, 1).

Distance to Nearest Vessel (D): Normalized distance to
the closest vessel measured in the vessel’s width, with a
maximum of 20 widths. Not all vessels transpond AIS, so
the exact position of each vessel is not always known but
detecting and tracking targets through data fusion [25] is
possible. This feature has the following linguistic definitions:
Close (Triangle: 0, 0, 0.5), Medium (Triangle: 0.25, 0.5, 0.75),
Far (Triangle: 0.5, 1, 1).

Time of Day (T): The current hour and minutes, normalized
between 0 and 1. This feature has the following linguistic
definitions: Pre-Dawn (Trapezoidal: 0, 0, 0.15, 0.25), Morning
(Trapezoidal: 0.2, 0.25, 0.45, 0.54), Afternoon (Trapezoidal:
0.45, 0.54, 0.7, 0.8), Evening (Trapezoidal: 0.75, 0.8, 1, 1).

Risk (R): The inferred suspicious risk. This feature has the
following linguistic definitions: Low (Trapezoidal: 0, 0, 0.25,
0.5), Medium (Triangle: 0.25, 0.5, 0.75) High (Trapezoidal:
0.5, 0.75, 1, 1).

The inference rules are given below, with A Mamdani-type
FIS [8].

e If D is Far then Risk Low.

e If T is Morning or Afternoon and D is Close and P is

Low and A is Small then R is Low.

e If D is Medium and P is not Low and A is not Small
then R is Medium.

e If T is Pre-Dawn or Evening and D is Close and P is
Low and A is Small then R is Medium.

e If T is Morning or Afternoon and D is Close and P is
not Low and A is not Small then R is Medium.

o If Time of Day is Pre-Dawn or Evening and Distance to
Nearest Vessel is Close and Risk of Departing Port is not
Low and AIS Off Time is not Small then Risk is High.

e If D is Close and P is High and A is Large then R is
High.

B. Smuggling Behaviour Detection

The second step requires the definition of risk features for
a more fine-grained assessment. In this context, the ASN is
tracking the SRVs that were in rendezvous with the MV.
Consequently, additional information is available.

Prior Smuggling Risk (S): This feature is the previously
smuggling risk feature, enabling the risk assessment to remem-
ber past evaluations. This feature has the following linguistic
definitions: Low (Trapezoidal: 0, 0.25, 0.75), Medium (Trian-
gle: 0.25, 0.5, 0.75), High (Triangle: 0.75, 1, 1).

Illumination (I): Normalized estimation of the extracted
illumination emanating from a ship, gathered through light
source identification analysis with the images of the tracked
vessel gathered by the UAVs. This feature has the following
linguistic definitions: Poor (Trapezoidal: 0, 0, 0.25, 0.75),
Good (Trapezoidal: 0.25, 0.75, 1, 1).

Evasiveness (E): The absolute difference between subse-
quent a value defined as the average distance of the vessel
to other vessels versus the average distance. This is used to
capture the behaviour of vessels that are constantly attempting
to keep a distance from other vessels. This feature has the
following linguistic definitions: Social (Trapezoidal: 0, 0, 0.25,
0.75), Evasive (Triangle: 0.25, 1, 1).

Time of Day (T): The current hour and minutes, normalized
between 0 and 1. The linguistic definitions are the same as in
the Suspicious Behaviour Detection case.

Risk (R): The inferred smuggling risk. This feature has the
following linguistic definitions: Low (Trapezoidal: 0, 0, 0.25,
0.5), Medium (Triangle: 0.25, 0.5, 0.75), High (Trapezoidal:
0.5, 0.75, 1, 1).

A Mamdani-type FIS [8] is used again. The inference rules
are given below.

o if E is Social and I is Good then R is Low.

o if E is Social and I is Poor and T is Morning or Afternoon

and S is Medium then R is Low.



TABLE I
MITIGATING ASSETS

Type Cost | Risk Mitigation | Speed (m/s)
Police cruiser 1 0.1 20
Police helicopter 10 0.5 70
Coast guard vessel 5 0.25 15
Gene 1 Gene 2 Gene 3
Layer 1 Enabled? Enabled? Enabled?
Layer 2 Target Port Target Port Target Port

Fig. 2. Mitigation Task Chromosome

e if E is Evasive and I is Poor and T is Morning or
Afternoon and S is Medium then R is Medium.

o if E is Social and I is Poor and T is Pre-Dawn or Evening
and S is not High then R is Medium.

o if E is Evasive and I is Good and T is Pre-Dawn or
Evening and S is not High then R is Medium.

e if E is Evasive and I is Poor and T is Pre-Dawn or
Evening then R is High.

o if S is High then R is High.

C. Mitigation

The final step is to define appropriate data structures,
operators, and fitness functions for the risk mitigation MRTA
process. Police and coast guard vessels will serve as mitigating
assets. This step attempts to give the best combination of com-
ponents for a proper mitigating task allocation, so while these
assets are not technically part of the RSNs, they could easily
be exchanged in other contexts. As was done in Section 1V,
tasks will first be defined, then genes and chromosomes will
be designed, followed by mutation and crossover operators.
Finally, the fitness functions will be presented.

A path can be predicted for the smuggling vessel with the
data gathered by the ASN, and certain ports can then be
predicted as possible berthing points. A risk mitigation task is
the relocation of a mitigation asset to one of the possible ports.
Table I presents the assets considered and their parameters.

A chromosome is encoded as shown in Figure 2. Each gene
corresponds to one asset and has 2 layers; an activation layer
and a target port. It can be described as follows, where L is
the set of predicted ports as given by the function fi..

Gene = B Z 21] @)
L= frL(O) (3

The mutation operator can be described as follows, where Py
is as previously defined.

fu = [?2] )
PL:{1/|L| I|lelL (10,
0 else

As solutions must aim to use as little resources as possible
so a fitness function will evaluate the cost of a solution. The
cost metric of a mitigating asset is simply a fiscal estimate

of moving the asset by one meter. The fitness function is
presented in Algorithm 4.

Algorithm 4 Cost Fitness Function

Cost < 0

for each Gene | Gene.a = 1, Gene € Chromosome do
Distance < Distance(Asset;, Gene.Port)
Asset Cost < Asset;.cost * Distance
Cost < Cost + Asset Cost

end for

Return Cost

The second fitness function evaluates the latency of a solu-
tion, with quicker solutions preferable. The speed parameter
of mitigating assets is measured in meters per second. The
fitness function is defined in Algorithm 5.

Algorithm 5 Latency Fitness Function

Latency <+ 0

for each Gene | Gene.a = 1, Gene ¢ Chromosome do
Distance < Distance(Asset;, Gene.Port)
Latency < Distance / Asset;.speed
Total Latency < Total Latency + Latency

end for

Return Latency

The final fitness function measures the actual mitigating
power of the solution encoded in the chromosome, with those
that can adequately stop the smuggling behaviour preferred
over ones that cannot. V refers to the set of tracked vessels.
The fitness function is defined in Algorithm 6.

Algorithm 6 Risk Mitigation Fitness Function

Ports < {Gene.p | Gene.a = 1, Gene € Chromosome}

Prisk « ZLZ‘O Prob(V;,P)VY P | P € Ports

for each Gene | Gene.a = 1, Gene ¢ Chromosome do
Gene.p.risk < Gene.p.risk * Asset;.mitigation

end for

Return Zigﬁsl Ports;.risk

VII. EXPERIMENTAL RESULTS

This section traces the behaviour of the system defined
in Section VI for the scenario and environment explained in
Section V.

The smuggling scenario will be first be simulated then
repeated with three non-smuggling SRVs. The initial environ-
ment is illustrated in Figure 3. The coast of Barcelona can
be see about 11 Km away. The environment grid cells have a
dimension of 250m x 250m for the purposes of ASN optimiza-
tion. The risk threshold to trigger aerial monitoring was set at
0.5, corresponding to a medium risk, while the risk threshold
for smuggling mitigation was set at 0.75 corresponding to a
high risk. The coalition size was limited to 7 and the genetic
algorithm had a stopping criterion of 100 generations. This
was needed to ensure a swift monitoring response.



Initial Environment

Fig. 3.
TABLE II
MONITORING SOLUTION FITNESS
Solution ID | Resources | Connectivity | Relevancy
1 0.0359 14 3
2 0.4465 14 21
3 0.3471 14 18

Fig. 4. Monitoring Task Allocation

The MV departed from a medium risk port (risk of 0.5).
Its AIS was off for a period of 2 hours during a week long
trip yielding a value of 0.1122 for the AIS off time feature. It
is engaging in a rendezvous with three SRVs, a value of 0.1
for the distance to nearest ship feature, and the time is about
4h00 giving the time of day feature a value of 0.168. These
features evaluate to a suspicious risk of 0.63219, well above
the risk threshold of 0.5.

An ASN optimization generates non-dominated solutions.
Table II presents 3 of the solution’s fitness values. Solution 5
is shown in Figure 4, where yellow, orange, and red correspond
to the first, second, and third segments of the path, respectively.
This solution is an expensive one, resource-wise, but offers a
good connectivity for each segment and a high relevancy.

Additional data that was not previously available is collected
with the ASN monitoring service. Images of the suspected
vessels can be taken, as well as their positions that were previ-
ously sporadically reported from third party sources. Tracking
the first vessel yields a value of 0.63219 for prior smuggling
risk, 0.72173 for illumination, 0.62495 for evasiveness, and
0.168 for time of day evaluating to a smuggling risk of
0.65637, only slightly below the smuggling risk threshold of

—@— Vessel 1
—g— Vessel 2
—— Vessel 3

Smuggling Risk

Evaluation

Fig. 5.

Smuggling Ship Risk Over Time

>

Googleearth

Fig. 6. Successful Risk Mitigation

TABLE I
MITIGATION SOLUTION FITNESS
Solution ID Cost Latency (s) | Mitigation (%)
1 64,976.21 1,439.9 0.33215
2 1,301,129.33 13,085.4 1.3539E-4
3 68,104.74 1596.3 0.29893

0.75. However, this risk is raised on subsequent evaluations
as a consequence of the prolonged monitoring, ultimately
resulting in a risk mitigating MRTA process. The smuggling
risk over time is shown for the three SRVs in Figure 5.

This risk mitigating MRTA process yields a set of non-
dominated solutions. The fitness values of three of these
solutions are presented in Table III. The end of the scenario is
shown in Figure 6, where mitigating assets are present at the
correctly predicted destinations of Port Olimpic, Port Forum,
and Marina de Badalona. Some assets are sent to Port Vell
due to the chosen mitigation solution that valued mitigation
over cost. This successfully concludes the scenario.

The second scenario starts with the detected rendezvous
with the aerial optimization. The second risk feature assess-
ment for one of the vessels gives a value of 0.5516 for prior
risk, 0.5432 for illumination, 1 for evasiveness and 0.168 for
time of day. However, the monitoring service provided by
the ASN gradually brings down the risk assessment to lower
levels, as shown in Figure 7. The risk assessment spikes as the
ship’s behaviour is intermittently seen as anomalous. Indeed, a
rendezvous between civilian ships off the coast in the middle
of the night should be suspicious but he risk never exceeds
the threshold, and tends to fall to lower values. The scenario
successly ends with no mitigating actions against the SRVs.
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Fig. 7. Civilian Ship Risk Over Time

VIII. CONCLUSION

UAVs will play a prominent role in future RSNs due to
their monitoring ability. Our methodology proposes a method
to integrate UAVS in RSNs by formulating the problem in the
context of risk management. We propose a scenario based on
expert knowledge and successfully apply our methodology. It
was shown that the network first determines potentially risky
situations at a high level, then monitors the area to gather more
information. It finally classifies the event as decidedly risky
and takes actions against it, or deems it ultimately not risky.

UAV technology is in its infancy and the plethora of
problems that exist in ASNs are only now starting to be
researched, with communication primary among these issues
[26]. Additionally, the data sources used are often not readily
available in a real setting. As a result, there remains work to
be done to bring a system such as the one proposed in this
work to reality.

UAVs in RSNs have many uses that have yet to be ex-
plored. Future work will concentrate on using the ASN for
administrative tasks, such as conducting auctions or being sink
nodes. Additionally, MRTA processes can allocate shared tasks
to both UAVs and ground nodes. Each of these concepts would
bring hybrid RSN/ASN closer to reality.
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