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Abstract— Complexity is concept that is typically used to 
describe the size or composition of a system and its constituent 
components. The cybernetics community has long recognized the 
need for complexity, understanding that only the variety of a 
system can destroy the variety of the environment and inputs to 
the system. Conversely, the applied psychology and decision 
making communities generally acknowledge that increased 
complexity degrades decision making performance in dynamic 
tasks through several mechanisms. A notional model of 
“Effective Variety” is discussed, which states that there is an 
optimal level or range of complexity for any human-machine 
interface that will facilitate optimal dynamic decision making 
performance in a human-machine team. This initial paper 
discusses a concept and model of Effective Variety, and focuses 
specifically on how interface complexity affects Situation 
Awareness (an antecedent to decision making performance), and 
areas for future research into such a theory. 

Keywords—Complexity; Situation Awareness; Requisite 
Variety; Dynamic Decision Making; Human-Machine Interface 

I. INTRODUCTION  
In the era of highly-networked and service-oriented systems 

where data are being made available faster than we can use 
them, complex and adaptive systems are increasingly prevalent 
in lieu of simpler solutions to achieve our goals [1]. Regarding 
the design of these systems, one may ask the question:  

How much complexity is the right amount of complexity?  

Research in the fields of cybernetics and computer science 
has shown that adaptation, resilience, and representational 
fidelity of the environment (all positive characteristics) are 
associated with an increased level of complexity in a system. 
From this system-centric viewpoint, the answer is likely to be 
some version of “as complex as it needs to be.” Research in the 
fields of human factors and decision making has shown that 
complexity of systems (namely their Human-Machine Interface 
(HMI)) generally degrades performance in dynamic decision 
making tasks. From this point of view, parsimony is key and 
the answer may be “as simple as possible.” 

This paper makes an incipient effort to answer this 
question, while exploring and fusing research from two related 
fields. The intent is to develop a notional model and viewpoint 
on complexity that accounts for performance of both the 
human and the system. “Effective Variety” is not a new 

concept unto itself, but merely a name being ascribed to a 
phenomenon that has been referred to by many different names 
(or often no name at all) throughout the literature. It is hoped 
that by defining and explaining the many component theories 
underlying the concept of Effective Variety, that it may spur on 
dialogue and research towards finding calibrated levels of 
interface complexity for increased performance in human-
machine teams across different contexts. 

II. COMPLEXITY AND THE LAW OF REQUISITE VARIETY 
In general, complexity is somewhat of a blanket concept 

that has been used to describe a number of phenomena across a 
wide variety of disciplines [2]. Because they are so similar in 
form and function, and because complexity is so broadly 
defined, complexity and variety are used interchangeably 
throughout this paper. The following sections will define and 
discuss the effects of complexity in human-machine interfaces 
(which may be graphical, text-based, physical controls, or 
otherwise) on Situation Awareness (SA) and decision making. 

A. (An Attempt at )Defining Complexity 
Before delving into the cases for and against complexity in 

system design and decision making, one must first attempt to 
define the concept. While definitions vary and the application 
of the term is diverse across the literature, most definitions of 
complexity in the social sciences include a measure of size 
(number of components), interconnectedness of components 
(number of connections), and dependencies or causal 
relationships governing the connections among components [2, 
3, 4]. Any number of these elements are used to describe a 
“complex” condition in an experiment on decision making [4, 
5].  

Reference [4] further refined complexity by breaking it into 
two types: Structural and Dynamical. Structural complexity is 
defined as many of the aforementioned features, such as size, 
diversity, and interdependence of components. Dynamical 
complexity refers to the degree of nonlinear change in the 
system as processes are executed. Therefore, complexity 
should not only consider a static picture of a system’s structure, 
but should also consider how that structure behaves and 
changes over time while interacting with the environment 
(which includes the human element). Reference [6] echoed this 
characteristic of complexity when assessing medical decision 



making for patients, whose conditions change continuously 
over time because of a variety of factors. While assessing 
human-machine teams, complexity can be found in a variety of 
sources, including the environment in which the decision 
making task is taking place, and the nature of the job or task 
itself.  

There are many definitions and measures of complexity in 
the cybernetics and computer science domains, and they are 
continuously growing. In Shannon’s Information Theory and 
its derivatives, information is measured in "bits” and is 
associated with the removal of uncertainty as information is 
provided [7]. Reference [8] lists dozens of potential measures 
of complexity, but highlights their commonalities in that they 
all are used to answer one of three common questions 
regarding a system: 

• How hard is it to describe? 

• How hard is it to create? 

• What is its degree of organization? 

It can be seen without undue effort that the definitions of 
complexity across the cybernetics and social sciences 
communities readily map to each other. The structural 
complexity (quantity, diversity, interconnectedness) and 
dynamical complexity (how the components behave over time) 
are common elements when used to describe complex systems 
in either field. 

B. Requisite Variety and the Case for Complexity 
Ashby’s Law of Requisite Variety has long been used to 

demonstrate the need for system complexity by stating that 
only variety can destroy variety [9, 10]. Based on information 
theory and rooted in the field of cybernetics, requisite variety 
simply states that the degree to which one can control a system 
is the proportion of complexity in the controls to the 
complexity in the system itself. By applying the law of 
requisite variety at each concurrent layer, one can see that a 
system must be as complex as the environment and the task set 
it will perform in. Additionally, the interface between the 
human and system must have requisite variety that is on par 
with the complexity of the system itself so that the human can 
effectively control the system. Therefore, interface complexity 
is driven by system complexity, which is driven by 
environment and task complexity - where each dependency is 
defined by Ashby’s Law. 

A look at the human immune system illustrates this 
concept. Because of the variety of antigens the immune system 
faces (environment and task complexity), it does not simply 
rely on having an antibody on hand for every known antigen. 
Instead, antibodies adapt as needed to combat different 
antigens while maintaining a sense of coherence [11]. That is, 
the complexity of our antibody capabilities are in comparison 
to the complexity of possible antigens is the degree of control 
we have to fend off external perturbations to our systems. In a 
more relevant use case, the use of simplistic, reductionist tools 
and decision aids in the Intelligence Community are rejected 
by analysts because they create overhead in assessing 
probabilities and numerical values, but do not handle the 
complexities of meaningful intelligence work (i.e., they are 

brittle to the complexity in the environment and the task itself) 
[12, 13]. 

Furthermore, system complexity offers advantages to 
human decision makers, namely by imparting contextual 
information that is valuable for enhancing comprehension of 
information, and which may be a source of cues for decision 
makers with relevant domain expertise. As [2] points out, there 
are multiple components to any message in addition to the 
informational component (the literal information value of the 
message). Additional components include the symbolic value 
of the message (e.g. an immediate or delayed response) and 
emotional values of messages, which play a large part in 
analysis of communications. This was demonstrated recently in 
a text analysis study where there was no statistical significance 
when responses were reduced to numbers, but there were 
several significant findings when the full complexity of 
messages was considered [14]. In a medical care scenario the 
application of simple rules to complex scenarios degraded the 
advantages of expertise (such as cue and pattern recognition), 
and made the treatments brittle to changing information [6]. 

The following assertions can be made with respect to 
complexity and system performance: 

• The higher complexity of a system in comparison 
to the complexity of the environment, the higher 
control that system exerts [9]. 

• The more adaptive or resilient a system is, the 
more complexity it must have [11]. 

• Complexity (specifically the quantity of 
information) increases knowledge and decreases 
ignorance [15]. 

III. SITUATION AWARENESS AND DECISION MAKING 
Having defined and explored the merits of complexity in 

system design (e.g. engenders adaptability and representation 
of context), one must also consider the effects of complexity on 
human decision making performance. There is a considerable 
amount of literature that shows how complexity can degrade 
decision making performance through a variety of 
mechanisms, namely by decreasing SA. 

A. Situation Awareness 
SA is a construct that describes how different factors in 

complex, dynamic systems affect a human’s ability to acquire 
and interpret information for effective decision making [16]. 
SA is a diagnostic of a state in a dynamic world that provides a 
ground truth to assess (i.e., whether the world is perceived 
accurately or not), which is contrasted against using decisions 
themselves as diagnostics (i.e., some choices are “more right” 
than others) [17]. 

The SA model is composed of three levels of SA, which are 
briefly described here [16]: 

• Level 1 SA: Perception of Elements in the 
Environment (SA1). The first level of SA involves 
perceiving the status, attributes, and dynamics of 
relevant elements in the environment. 



• Level 2 SA: Comprehension of the Current 
Situation (SA2). The second level of SA goes 
beyond awareness of elements, and includes 
understanding the significance of those elements 
with respect to operator goals. While a novice and 
expert may have the same SA1 given a set of 
elements, the expert would likely have greater SA2 
than the novice. 

• Level 3 SA: Projection of Future Status (SA3). The 
final level of SA involves comparing the 
comprehending meaning of the perceived 
information with operator goals to predict 
projected future states of the environment that are 
valuable for decision making. 

It is important to note that SA is separate from, and 
precedes, decision making [16, 18, 5]. This also raises another 
important point: Higher SA does not always equate to higher 
decision making performance. A decision maker could have 
high SA at all three levels (SA1-3) but no domain knowledge, 
and thereby make poor decisions despite their high SA. 
Conversely, somebody with high domain expertise but low or 
incomplete SA can make poor decisions. While the level of SA 
is not equivalent to the level of decision making performance, 
it is generally be asserted that higher SA enables higher 
decision making performance (i.e. they are positively 
correlated). It should also be noted that SA is context-
dependent, or that it only involves the perception, 
comprehension, and projection of information that is relevant 
to achieving operator goals [16, 5]. This is an important 
concept because it underlies how expertise and individual 
differences may affect the process of achieving and 
maintaining SA. 

B. Decision Making 
 Similar to the concept of complexity, decision making has 
many definitions attributed to it [12]. Dynamic decision 
making is different from general judgement and decision 
making in that it involves a series of interdependent decisions 
where the state of the environment changes due to external 
mechanics and the decision maker interacting with it over time, 
and where decisions are made in real time [19]. There are 
several classes of decision making theories, although the two 
most prominent classes of decision making theories are rational 
decision making and Naturalistic Decision Making (NDM). 

The primary decision making theory in the field is expected 
utility theory [12]. Expected utility falls under the class of 
rational decision making, which describes decision making 
models where decisions are made to allocate a limited amount 
of resources to maximize an output value that is aligned with a 
set of goals. When faced with a complex decision space, 
conceptual models, or heuristics are used to reduce complexity 
of the problem space, so that decisions can be evaluated while 
considering multiple (sometimes competing) goals, risks, and 
uncertainty [20, 21]. In the case of rational decision making, 
good decision making can be defined as the achievement of the 
goal end state (minimizing or maximizing some output value) 
through commitments to certain courses of action (the 
decision).  

NDM is the second major class of decision making theory, 
which focuses on how people use their experiences/expertise to 
make decisions in naturalistic settings in high-stakes, high-time 
pressure scenarios [12, 22]. The most prominent model in 
NDM is Klein’s Recognition-Primed Decision (RPD) model, 
which posits that decision making is made at three levels [22], 
where higher levels of sensemaking are only used if necessary. 
When attempting to emulate this model with algorithms, they 
have been aptly named “Fast and Frugal” heuristics [23]. At 
the first (“simple match”) level, the decision maker perceives a 
situation as “typical” and reacts with an appropriate Course of 
Action (COA). If the situation is atypical (but not highly 
complex), the decision maker must choose a COA from 
possible outcomes (analogs of the situation at hand). If (and 
only if) the situation is unfamiliar and complex, the decision 
maker must assess COAs via mental simulation of their 
outcomes. A distinguishing feature of NDM is the goal of 
satisficing. Rather than pursue an optimal outcome, good 
decision making is defined as making a satisfactory decision 
under time pressure.  

While these different classes of theories differ substantially 
in their underlying models, they both can be generalized into a 
generic three-step scheme of decision making [12]: 

• Information Acquisition 

• Perception and Interpretation 

• Commitment 

In addition to the rationalistic and naturalistic methods just 
described, hybrid decision making methods can also be used in 
complex, dynamic environments [5]. Regardless of the method 
used, one can readily see the similarities in the three levels of 
SA and the generalized three-step scheme of decision making, 
especially in the first two steps. The acquisition and 
interpretation steps are directly affected by SA1-2, while the 
three stages of the RPD model correspond largely to SA1-3, 
supporting the notion that SA is critical for effective dynamic 
decision making, irrespective of exactly how decisions are 
being made. This further highlights the understanding that a 
decrease in SA generally results in a decrease in decision 
making performance [16]. 

IV. THE CONCEPT OF EFFECTIVE VARIETY 
Having addressed the nature of complexity and how it 

affects both system and human performance, the initial 
question is revisited: How much complexity is the right amount 
of complexity? To attempt to answer this question with respect 
to dynamic decision making in human-machine teams, a 
concept and model of “Effective Variety” is presented (Fig. 1). 
It is asserted that the “right” amount of complexity for an 
interface lies at the intersection of the human (i.e., the decision 
maker) performance (blue) and system performance (red) 
functions. Because interface complexity  is not optimal at a 
minimum or maximum point (like automation or trust), and 
that it must be calibrated appropriately based on the context of 
the situation (i.e. environment and task) and the abilities of the 
decision maker, the optimal amount of complexity is a 
theoretical amount that lies somewhere between the peaks of 
the curves. The intersection of the two functions yields the 



highest decision making performance that is possible given 
both curves. However, if one assumes a cumulative 
relationship among the two functions, then there is a range of 
complexity for interface designers to consider, located between 
the peaks of the two functions. If there is inadequate variety, 
the system cannot maintain control and the decision maker is 
ignorant to relevant information required for the task. If there is 
excessive variety the system is no longer robust and instead 
becomes fragile [24], and the decision maker suffers from poor 
SA from being over-saturated with data. If there is effective 
variety; however, the system exhibits control and robustness, 
while the decision maker has good SA. The authors do not 
attempt to explicitly define these performance functions, but 
instead use approximations of normal curves, acknowledging 
that performance decreases with too little or too much 
complexity. The following sections will discuss the model 
itself, specifically how excess complexity degrades SA, and 
enumerate some testable hypotheses based on the provided 
model.  

A. A Notional Model of Effecive Variety 
Based on theories and experimental results in the literature, 

a notional model of Effective Variety for dynamic decision 
making in complex tasks and environments was developed 
(shown in Fig. 2). At the simplest level, complexity of the 
decision making task and environment drive the need for 
system performance (i.e.., the ability to model, represent, and 

be resilient to the environment and task). Requisite Variety 
shows that the interface must be as complex as the system to 
enable effective control, thereby driving up the complexity of 
the interface. The complexity of the interface degrades human 
cognitive performance, which, in tandem with system 
performance, directly contributes to the overall human-system 
performance (i.e., the ability for the human to perform effective 
dynamic decision making with the system at hand). Simply put, 
the interface should be as complex as needed for the 
environment and task, but no more. This high-level model is 
presented under the acknowledgement that there are more 
detailed models for each interaction shown in the model 
(complexity and SA is the only such relationship assessed 
further in this paper), and that this model is likely not 
exhaustive. 

As previously stated, complexity has been shown to be 
required for system performance, specifically the system’s 
capacity for control, resiliency/adaptability, and its ability to 
model or represent the environment and task to an appropriate 
fidelity. It has also been demonstrated that complexity is 
negatively correlated to human cognitive performance, which 
is a term used herein to describe a combination of SA and 
decision making. Because SA is an antecedent to effective 
decision making, the negative correlation between complexity 
and SA extends to decision making. That is, the ideal level of 
interface complexity lies at the point between the functions of 

 
Fig. 2. High-level model of effective variety, with circles denoting how each factor drives another. 
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Fig. 1. Optimum interface complexity lies at the intersection of system and human performance functions (i.e. between the red and blue peaks). 



system performance and cognitive performance.  

To illustrate this concept, imagine that you are exerting 
Command and Control (C2) over a swarm of multiple 
Unmanned Aerial Systems with goals to get them in different 
mission areas as quickly as possible while hugging the terrain 
to avoid detection. With an interface providing displays and 
controls for each system’s position, altitude, and speed, you 
may have compromised SA and therefore exhibit poor decision 
making, and ultimately low human-system performance in 
achieving the goals. If all aircraft had a fixed altitude set 
slightly above the highest terrain point, SA and decision 
making would likely be higher because an entire dimension of 
(structural, and thereby dynamic) complexity was removed 
from the task; however, the human-system performance might 
still suffer because there is no control over said dimension.  

The concept of Effective Variety lies in providing the right 
amount of interface complexity (through both displays and 
controls) to the human such that the human-system team has 
not just requisite variety (i.e. the system interface is as complex 
as the underlying system, environment, and tasks), but effective 
variety, in that is calibrated such that it enables effective and 
timely decision making. In the use case presented, this may 
take the form of having two or three discrete altitudes available 
for selection, which provides greater adaptability and 
representational fidelity of the environment, but vastly reduces 
the amount of information that must be perceived, 
comprehended, and projected by the decision maker.  

The final component of the model is the collection of 
intermediary factors, which are all factors that affect cognitive 
performance, or the ability to “withstand higher levels of 
complexity” in this context. Research on Levels of Automation 
(LOAs) has shown there is increased performance and 
decreased workload when automation is used to implement 
“button pressing” without contributing to the cognitive aspects 
of the decision making process [25]. Therefore, one may 
notionally assert that automation mitigates complexity by both 
aiding in human decision making and by simply executing 
control tasks in a rapid manner. In addition to the role of 
automation in aiding decisions and performing tasks, the 
decision maker’s trust in that automation can also affect the 
ability to effectively make decisions [26, 27]. Reference [16] 
mentions that individual differences such as executive function 
(e.g. attention and working memory) are factors that limit 

operators from acquiring SA. Finally, domain expertise allows 
people to manage complexity better since information is 
relative to how much they don’t know about the 
states/communication prior to receiving them [15]. That is, the 
more one knows, the more resilient they are to incomplete SA 
because the potential value of information is less. Because the 
relationships between complexity, SA, and these intermediary 
factors have not been explicitly defined, they are mentioned in 
this model, and merit further research.  

B. Complexity and Situation Awarness 
While each relationship between concepts in Fig. 2 has a 

substantial section of the literature devoted to it, the focus of 
this initial paper is to specifically address how complexity 
affects SA. As noted by [2], there are two major types of 
complexity: Structural and Dynamical. Fig. 3 shows a model of 
how these different types of complexity affect SA, specifically 
from each measure of complexity to each level of SA, which is 
a refined view of the negative correlation between complexity 
and SA shown in the bottom left of Fig. 2. 

 Because the first level of SA is involves the perception of 
relevant elements in an environment, a higher quantity and 
diversity of components in a system will adversely affect the 
ability to achieve and maintain SA1. To mitigate this 
phenomenon in a C2 system, filters and display layers would 
be provided to aid in perception of relevant entities. The 
second level of SA involves the comprehension of what the 
different perceived factors mean, therefore complexity in 
component  interdependence would negatively affect achieving 
and maintaining SA2. In C2 systems this is mitigated with 
features such as leader lines, which show the speed and 
direction in which an entity is moving, rather than decision 
makers needing to mentally interporlate the last few positions 
and their raw values. Finally, the ability to project future states 
(SA3) is directly affected by the dynamical complexity of the 
system, or the degree to which the components change over 
time as they interact with the environment and themselves. In a 
C2 scenario, this would be mitigated by decision aids or alerts 
if certain projected conditions are met (such as a collision). 

In addition to mapping these elements of system 
complexity to levels of SA, there are still relationships within 
the concepts of complexity and SA, respectively. One may also 
assert that because the dynamical complexity of a system is the 

 
Fig. 3. Model of interface complexity and the mechanisms by which it degrades situation awareness. 



complex interactions of the structure over time, that high 
dynamic complexity is commensurate with a high structural 
complexity. With regards to SA, each level builds upon the one 
before it in a hierarchical process [16]. This is reflected in the 
model, where each level of SA positively affects the one 
following it. 

C. Some Predictions 
A model has been presented based upon findings in the 

literature and logical conjecture. The point-by-point 
relationships in the model have been established by 
experimentation and evidence. However, no studies, to the best 
of the authors’ knowledge, have been performed to substantiate 
such a model in total. Some specific, testable, hypotheses 
based on this model are presented towards such an effort, 
which are all predicated on the assumption of a dynamic 
decision making task of high complexity: 

• With all other factors being held constant, an 
increase in interface complexity (from a minimal 
point) will result in an increase in decision making 
performance until an optimal point, and will then 
depreciate. 

• With all other factors being held constant, a lower 
temporal pressure condition would result in higher 
decision making performance than a condition 
with a higher temporal pressure. That is, providing 
more time per decision would enable greater SA 
based on a fixed amount of complexity. 

V. DISCUSSION 

A. Conclusions 
This paper has outlined a concept and notional model of 

Effective Variety in human-machine interfaces for optimal 
dynamic decision making. It has been demonstrated that 
system complexity is generally required for higher system 
performance (through representativeness, robustness, etc.); 
however, it also deteriorates human decision making by 
degrading SA, an antecedent for effective dynamic decision 
making. Therefore, the “right amount” of system complexity 
falls at the point where human performance and system 
performance intercept (shown in Fig. 1). 

Other outcomes of this research that have been presented in 
this paper, and conclusions that have been drawn include: 

• Reconciled research and viewpoints of complexity 
from both system-centric (cybernetics) and 
human-centric (human factors) fields of study. 

• Enumerated several intermediary factors that 
affect the tradespace between human and system 
performance and complexity. 

• Provided a model of how different types of 
complexity degrade each level of SA. 

• Made progress towards a framework or method 
for consideration when designing human-machine 
interfaces for complex systems. 

B. Limitations 
A concept and notional model of effective variety have 

been presented, and several conclusions and hypotheses have 
been derived from it. However, it would be myopic to not 
acknowledge the different limitations associated with this 
initial effort.  

The initial concept and model assumes a single user, single 
interface system. This simple human-system configuration is 
not always the case, and is growing increasingly less common 
still. The growing prevalence of Human-Agent Collectives 
(HACs), where humans and agents engage in more fluid 
relationships to achieve the goals of the collective [1] drives 
the need for a multi-human, multi-system model that is 
inclusive of shared mental models, shared SA, and team 
decision making dynamics [28].  

The “Intermediary Factors” identified in Fig. 2 are treated 
as a “black box” in this notional model, rendering it grossly 
incomplete. There is a considerable corpus of literature on how 
different types and levels of automation affect SA and decision 
making [25], and how trust in automation [26, 27] drives 
complex human-machine interactions. Individual differences 
have also been acknowledged, but not explored to sufficient 
detail in this incipient effort. These intermediary factors need 
to be explored in depth before any substantial theoretical 
contribution can be put forward. 

Finally, there is a considerable amount of brittleness in the 
concept since it is composed of multiple theories and findings, 
each which are largely context-dependent. When the 
component axioms from these theories are fused into a larger 
model, the model inherits the restrictions and contingencies of 
the subordinate theories [29]. This inherent brittleness makes 
this model of calibrated complexity somewhat of a “folk 
theory.” Folk theories are still valuable topics of inquiry, as 
they bridge gaps between mental conceptions of phenomena 
and objectively-demonstrated principles of science [17]. 
Reference 6 has echoed this sentiment, showing that 
incomplete or notional theories have merit so long as they 
provide considerations and intuitions towards effective system 
design.  

C. Future Work 
This initial paper has described the concept of effective 

variety and presented a notional model of how complexity 
affects human-system performance in dynamic decision 
making tasks. Future work on this concept will involve 
performing more research on the different interactions within 
the notional model, refining the model, and testing the different 
hypotheses that were previously stated. Specific research goals 
include: 

• Address how complexity affects system 
performance specifically in regarding interfaces. 

• Address how complexity affects judgement and 
decision making in rational and naturalistic 
models (separate from SA). 

• Model how intermediary factors such as 
automation, trust in automation, individual 
differences, and expertise mediate the relationship 



between complexity and dynamic decision 
making. 

• Develop numerical methods to measure, model, 
and simulate limits of human capacity for coping 
with complexity under time pressure. 

• A diagnostic or checklist for system designers to 
assess the types and quantity of complexity 
present in a system interface design, and whether 
it will be calibrated appropriately based on the 
intended users and operational context. 

Having achieved these near-term objectives, the ultimate 
goal will be to develop an integrated theory of complexity and 
dynamic decision making in human-system teams that has a 
formal mathematical description.  
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