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Abstract— Enhanced Course of Action (CoA) generation is a 

fundamental component of effective risk management and 

mitigation. This paper presents an extension of a system capable 

of integrating physics-based (hard) and people-generated (soft) 

data, for the purpose of achieving increased situational 

assessment and automatic CoA generation upon risk 

identification. The system’s capabilities are enhanced through 

added support for managing multiple, concurrently unfolding 

risky events (situations) with the goal of attaining superior 

resource management and thus reducing the overall security 

operation costs. The CoA generation process is evaluated 

through a series of performance measures. The proposed 

conceptualization is validated via an elaborate experiment 

situated in the maritime world. 

Keywords—course of action recommendation; decision support 

systems; multi-criteria decision making; high-level information 
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I. INTRODUCTION  

Advances in the telecommunications sector – namely, the 

development of always-connected, hand-held, sensor-packed 

computing machines we refer to as smartphones – have 

enabled people to play the role of portable observational 

sources of information. Traditional, physics-based (e.g., 

acoustic, sonar, radar, or electro-optical – frequently referred 

to in the literature as ‘hard’) sensors are superior in their 

ability to characterize physical objects by estimating their 

attributes, computing their locations and velocities, and 

making predictions on their future states. Humans, on the 

other hand, are inferior in performing these mathematically-

intensive activities, but themselves excel in their sui generis 

capacity to provide inferred relational information and 

estimated intents and capabilities of observed entities [1]. 

These complementary information types can provide for an 

effective synergy between physics- and human-derived 

observations to augment the situational awareness picture 

constructed by Information Fusion (IF) systems. Including 

human-derived (also referred to as ‘soft’) data into IF systems 

comes at a price. Hard sensors are manufactured under 

stringent requirements and thus have known error 

characteristics; two properly functioning sensors of the same 

type will produce identical (to a previously known and 

acceptable tolerance) information when observing the same 

event. This is not true about soft sensors, however as 

perception is inherent in the human observation process, and 

therefore situational observations are subject to the knowledge 

and skill level of the individuals carrying them out. It can be 

said that human beings are like uncalibrated sensors. The 

information provided by them is subject to unknown bias and 

uncertainty; furthermore, it can also be subject to conflict, as 

multiple people observing the same phenomena may provide 

inconsistent accounts of what transpired [2], [3]. Additional 

challenges of assimilating people into IF systems include: (1) 

no standard ways of representing the collected heterogeneous 

data; (2) performance assessment techniques are still largely 

non-existent; (3) there is no clear methodology for what the 

most effective way to task people is (they are an uncontrolled 

resource). As a result of these aforementioned challenges, at 

present, there exists no generic, standardized framework to 

seamlessly integrate and exploit these heterogeneous 

information sources. Nonetheless, automated solutions in 

Hard-Soft IF (HSIF) can assist in operational decision making, 

as they alleviate analysts from dealing with the otherwise 

overwhelming, voluminous amount of sensor data. One 

environment, greatly burdened by the curse of big data, is the 

maritime domain. The research presented in this paper strives 

to be a step towards an automated HSIF solution in this 

domain by building on from [11] through expanding the 

proposed HSIF system’s capabilities by: (1) supporting CoA 

generation for a wider variety of risky events, and (2) allowing 

for it to monitor and manage any number of concurrently 

unfolding events by generating responses (i.e., CoAs) 

composed of tasking resources (assets – e.g., helicopters, 

unmanned aerial vehicles, fixed wing aircraft, maritime 

vessels) that will carry out the specified concurrent missions. 

The research in [11] presents the first instance of hard-soft 

data-driven response generation for the maritime domain.  

The remainder of the paper is structured as follows. 

Section II briefly reviews relevant work. Section III presents 

background information pertaining to maritime security 

operations. Section IV unveils the proposed, soft-data-driven 

response generation methodology and Section V lays out its 

associated experimental results. Finally, Section VI presents 

the concluding remarks and discusses future research 

directions. 



II. RELATED WORK 

Level 2 (L2) and Level 3 (L3) IF are respectively defined 

as situation assessment and impact assessment in the Joint 

Director of Laboratories/Data Fusion Information Group 

models [4]-[6]. The responsibility of situation assessment is to 

characterize currently unfolding situations in the environment 

being monitored whereas impact assessment is concerned with 

the generation of suitable CoA recommendations and the 

estimation of their effects on the previously characterized, 

presently unfolding situations. The estimation is achieved by 

carrying out scenario simulations of the different sets of CoAs 

and calculating their associated performance measures.  

In the maritime world, operators often rely on data sources 

generated by hard sensors (monitoring vessel traffic) for the 

purpose of identifying risks or suspicious events at sea. 

However, soft data in this area presents a trove of relevant 

information, such as maritime incident details or textual 

reports on vessel sightings. Soft data has been previously 

considered in [7] and [8] to respectively extract risk features 

from maritime incident reports and perform hard-soft risk-

driven situation assessment. As demonstrated in [7], natural 

language processing methods can be effective in extracting 

from such reports meaningful information that is 

representative of human intuition. In [8], we demonstrated 

how this soft information can then be fused with information 

derived from hard data sources in order to provide a more 

comprehensive situational awareness picture. 

The generation of viable responses has been previously 

investigated in [9] and [10] (where the latter builds on from 

the former by accounting for behavioral intents in its risk 

modeling), but considering only hard data sources. More 

recently in [11], we explored the generation of Courses of 

Action (CoAs) through the use of both hard and soft data 

guided by evolutionary multi-objective optimization.  

A. Response Assets and Onboard Sensors 

Within this research, we make use of two broad categories 

of assets – namely aerial and naval. The former group 

includes Unmanned Aerial Vehicles, Fixed-wing Aircraft, and 

Helicopters. The latter group comprises vessels of different 

types (e.g., speed boats, tug boats, military ships). 

From a mission response perspective, each asset can 

belong to one of three groups: Coast Guard Assets (CGAs), 

Auxiliary CGAs (ACGAs), and Opportunistic Response assets 

(ORAs). CGAs and ACGAs can be either docked at their 

home base or traveling somewhere in the vicinity. ORAs are 

not owned by the coast guard, but happen to be in the vicinity 

at the time of the detected risk events and are able to provide 

assistance. The different asset platforms have different 

associated characteristics – costs to operate/move and transit 

speeds. Assets also can have onboard detection equipment 

(such as sensors). Two sensors which can be used for 

maritime operations are Doppler Radar Model (DRM) and 

Synthetic Aperture Radar (SAR). SAR sensors are mounted 

on aerial platforms and used to look down on targets located 

on the Earth’s oceans and seas. In contrast to them, DRM 

sensors are near the surface of the Earth; they are typically 

mounted on tall masts, where the height of these structures 

determines the distance to the horizon (beyond which targets 

cannot be detected). The probability of target detection for 

both of these sensors is directly related to their corresponding 

power levels, as well as being directly affected by the 

prevailing weather conditions in the region they are 

monitoring. 

B. Search Patterns 

In maritime security operations, there are four popular 

types of search patterns with which response assets can be 

tasked to execute in their designated search areas [12], [13]. 

These are the Track Crawl, as depicted in Figure 1.; Parallel 

Track Line, as depicted in Figure 2.; Outwards Expanding 

Square, as depicted in Figure 3.; and Inwards Collapsing 

Square, similar to the depiction in Figure 3., but with reversed 

directionality. 

The use of the search patterns varies depending on the 

characteristics of the situation being dealt with. The Track 

Crawl is used whenever the track of the Vessel to be Located 

(VL) is known ahead of time. Whenever the track is not 

known, the Parallel Track Line is used to task search assets to 

follow parallel tracks along the expected drift current. The last 

two search patterns (the Inwards/Outwards 

Collapsing/Expanding Squares) are used whenever only the 

last known location of the VL is captured ahead of time.  

 

Fig. 1. Track Crawl, as presented in [13] 

 

Fig. 2. Parallel Track Line, as presented in [12] 

  
Fig. 3. Outwards Expanding Square, as presented in [12] 



Fig. 4. Soft-Data-Driven Response Generation (SDDRG) System 

III. CONCURRENT, SOFT-DATA-DRIVEN RESOURCE 

MANAGEMENT 

A vital L3 Fusion component is the timely, automatic 

generation of suitable responses, with the intention of 

lowering a risk or hazard present in the environment being 

monitored. This section unveils the architecture for a system 

capable of generating such CoAs for multiple, concurrently 

unfolding risk events by extracting mission-specific 

requirements from historical soft incident and response data. 

The expectation is that: (1) the inclusion of such people-

generated data will yield a higher average chance of mission 

success; and (2) that considering multiple situations (events) at 

once will yield a lower average asset utilization in missions 

than when the same situations are being processed 

independently by the system, due to a more optimal asset-to-

risky-event assignment.  

A. System Architecture 

The Soft-Data-Driven Response Generation (SDDRG) 

system, whose architecture is laid out in Figure 4., is capable 

of performing its CoA-generation duties through the aid of 

seven modules: (1) the Anomaly Detection Module (ADM), 

which is responsible for determining the confidence levels for 

different anomaly types (e.g., piracy events, vessels in 

distress) for each of the assets being monitored; (2) the 

Situation Assessment Module (SAM), which determines the 

most pressing situations the system will tend to; (3) the 

Response Requirements Determination Module (RRDM), 

which uses historical incident data to infer the response 

requirements based on the type of unfolding situations and the 

manner in which similar, previous (historical) situations were 

dealt with; (4) the Asset Selection Module (ASM), which is 

responsible for selecting the assets that will tend to the  

 



unfolding situations of interest; (5) the Asset Path Generation 

Module (APGM), which generates tracks for all the assets, 

based on their designated search areas and assigned search 

patterns; (6) the Response Enactment Module (REM), which is 

responsible for carrying out the response simulation; and 

lastly, (7) the L3 Performance Assessment Module (PAM), 

which tracks and calculates six performance metrics, 

according to which each potential response is judged. This 

research focused on the expansion of the system’s L3 modules 

(the RRDM, ASM, APGM, REM, and PAM), which are all 

shaded in grey within the architectural blueprint. The behavior 

of the remaining two (L2) modules was simulated for the 

purposes of this study.  

B. Response Encoding 

The tasking of the assets for the different response 

missions is based on the mission requirements (MRs) that are 

extracted from the soft data. The MRs themselves define what 

specific types of assets are required for each type of risk event 

(situation), as well as what type of onboard sensors each type 

of asset should possess. The module provides a designated 

subgrid (a subset of the response search area) for each asset. 

Whenever a risk event is detected by the system, a response 

grid surrounding that incident is immediately produced. The 

response grid resembles a rectangular matrix composed of 

cells, where each cell is a square with an area that can be 

entirely enclosed by the sweep area of the smallest-sweeping 

sensors of the selected response assets. Figure 5. demonstrates 

an example response grid with four subgrids and three gaps in 

search area coverage. Asset subgrid designation is optimized 

with the popular Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) [14]. This algorithm is employed to yield a set of 

spread non-dominated candidate solutions (responses) with 

varying degrees of mission latency, cost, response area gap 

sizes, and levels to which they meet MRs. The reader is 

referred to [9] for insights into the reason for which this 

algorithm was selected for carrying out multi-objective 

optimization. 

As presented in Table 1, potential response missions are 

encoded as four-layer chromosomes, where each gene 

corresponds to an asset that can be engaged in the response. 

As previously defined in [11], the first layer encodes whether 

or not an asset will participate in the mission, and the second 

layer codifies the type of search pattern the asset will have to 

execute within its designated subgrid.  

 
Fig. 5. Example Response Grid  

TABLE 1.  CHROMOSOME ENCODING OF A CANDIDATE RESPONSE 

 

The third layer is new and has been added in this work in 

order to denote which particular response (i.e., situation) grid 

the asset will be exploring, as there may be multiple response 

grids whenever there are multiple ongoing risk events. The  

fourth layer has been modified to encode the designated asset 

subgrid – within the selected response grid in the third layer –

for that asset, by encoding the row and column indices of the 

top left corner location of the response grid, as well as the 

length and width of its designated subgrid, analogously to  

[10]. 

C. Response Objectives  

There are four objectives used by the NSGA-II optimizer: 

Mission Time (MT), Mission Expenses (MEs), Unexplored 

Search Area (USA) percentage, and MRs, which are as 

previously defined in [11]. The MT is calculated by 

determining how long it would take each of the assets to travel 

to its designated subgrid, and then perform its assigned search 

pattern within the subgrid. The MEs are calculated by 

determining what the total accrued cost of displacing the 

assets is. The USA quantifies the percentage of the search 

areas that remains unexplored by response assets. The MRs, as 

previously discussed, are derived from the soft data, and 

quantify the similarity between the number and type of assets 

partaking in the response mission along with the type of 

sensors attached to each asset, and the number and type of 

assets and sensors located in historical (soft) data missions.  

D. Response Objectives Performance Metrics 

There are six different metrics that are used to evaluate the 

quality of the responses; these, along with the details of each 

response are presented to the human operator, who proceeds to 

select which response, if any, should be carried out, given his 

or her training, expertise and intuition. The first five metrics 

remain as previously defined in [11] and constitute the level to 

which the four objective functions (MT, ME, USA, MRs) are 

met, as well as a fifth metric, Potential Contact Detections Per 

Response Asset (PCDRA), which quantifies the amount of 

potential VL contacts that are detected during mission 

simulations. The sixth metric, proposed as part of this 

research, is the Asset Utilization (AU), which quantifies the 

percentage of assets partaking in a response mission. More 

formally, it is defined as: 

 



𝑨𝑼 =
{𝒂 𝜺 𝑨 ∶ 𝒂.𝒑𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒕𝒆𝒔 = 𝒕𝒓𝒖𝒆}

|𝑨|
     (1) 

where A represents the set of assets available to participate in 

missions. 

E. Evolutionary Operators 

There were two evolutionary operators used in the study: 

standard crossover and a custom mutation operator. The 

former randomly selects a crossover point and swaps the 

information in each of the four layers of each parent’s 

chromosome (before and after the swap point) thus generating 

two offspring. The latter operator is responsible for mutating 

each gene layer based on an input probability, and for 

ensuring that if the asset’s subgrid boundaries extend beyond 

those of the full search grid (as a result of the mutation), it will 

trim the subgrid to fall entirely within the search grid. The 

custom mutation algorithm is presented in Figure 6. 

IV.  CASE STUDY: MARITIME PIRACY AND VESSEL IN DISTRESS 

This section presents a simulated maritime experiment that 

includes two concurrent risk events – a Vessel in Distress 

(VID) and a Maritime Piracy situation. Both events occur at 

roughly the same time. To gather experimental data, the 

SDDRG system was run with three different configurations: 

 with soft data enabled by considering the VID and 

piracy event independently (in a sequential fashion); 

 

Fig. 6. Custom Mutation Operation 

 with soft data by concurrently assigning assets to 

both the VID and Piracy event; and 

 same as configuration (2), but without considering 

soft data 

The three different configurations were all executed with 

the same set of scenario assets, which included a collection of 

naval as well as aerial platforms. The risk events occur in the 

northeast coast of Africa. The region has a Somalian coast 

guard station located at latitude of 11.777, and longitude of 

51.243; a Somalian auxiliary coast guard station located at 

latitude of 4.408, and longitude of 47.784; and a Yemeni 

auxiliary coast guard station located at latitude of 15.770, and 

longitude of 52.044. The pirate attack under consideration 

occurs approximately 500 km off of the Somalian coast line – 

at latitude of 7.525, and longitude of 54.950; at the time of the 

incident the weather was relatively calm. The VID is 

approximately 530 km off of Oman’s coast at latitude of 

14.063, and longitude of 59.721; the VID situation is 

occurring in bad weather conditions. Some of the scenario’s 

assets were docked at the two auxiliary coast guard stations, in 

Yemen and Somalia, and at the coast guard station in Somalia. 

Other assets were dispersed throughout other locations in the 

region. Note that assets with higher-quality sensors (those 

with higher operational power) are costlier to operate. Figure 

7. depicts the region being monitored by the SDDRG system, 

along with the non-docked assets and the known pirate tracks 

that are used by the REM to carry out pirate vessel 

simulations. 

Figures 8 and 9, respectively, present the historical 

incident response reports deemed by the system to be the most 

pertinent to the VID and Piracy risk events. The VID report 

describes an incident taking place during adverse weather. As 

a result, the coastal agency decided to dispatch assets with 

high-quality sensors (all of the assets had ‘very high’ quality 

sensors, with the exception of Aircraft-2, which had a ‘high’ 

quality onboard sensor). This report tells the system to explore 

solutions comprising of assets with high quality sensors via 

the MR objective function used within NSGA-II. The piracy 

event report describes an incident taking place during good 

weather, and as a result, the coastal agency deployed assets  

 
Fig. 7. Vessel in Distress and Piracy Events in the North-East Coast of 

Somalia 



 

Fig. 8. Most Pertinent VID Incident Report  
in the Somalian Region 

 

Fig.9. Most Pertinent Piracy Incident Report in the Somalian Region 

with lower quality sensors, because of their cheaper 

operational costs). 

A. Expected Trends 

For this experiment (executed with the three different 

configurations) there are four expected trends: 

1) Expected Trend 1: It is anticipated that whenever 

simulations are run with the soft data enabled (vs. disabled), 

there will be a higher chance of mission success, as judged by 

the PCDRA value obtained via response simulations.  

2) Expected Trend 2: It is also expected that within the 

results gathered by running the system with soft data enabled, 

there will be a correlation between the level to which MRs are 

met and the PCDRA value – the higher the MRs are, the 

higher the PCDRA values are expected to be. It is further 

expected that the converse might not necessarily be true. 

3) Expected Trend 3: Similarly, there is an expected 

correlation between the MR and the ME objectives, as higher-

quality sensors are attached to more expensive platforms, and 

the VID is taking place during adverse weather conditions 

(i.e., the soft data points the system towards the use of such 

sensors in bad weather).  

4) Expected Trend 4: It is expected that whenever the 

system is setup to consider multiple, concurrently unfolding 

risk events, the average AU value will be lower, as assets will 

be more optimally assigned to the risk situations they are most 

needed for. 

B. Experimental Results 

Figure 10 presents the normalized values for PCDRA, ME, 

and MR. It can be observed that whenever the MRs are met to 

a high extent, the PCDRA and ME values are also high; in 

fact, meeting MRs with a degree of 7 or more presents a 3.335 

times increase in PCDRA values as compared to the rest of the 

responses (i.e., the ones with MR degree of less than 7). This 

increase comes at the expense of costlier responses – 

approximately 10 times more expensive on average. Both of 

these observations fall in line with Expected Trend 2 and 

Expected Trend 3. The observed increase in PCDRA and ME 

for high values of MR is attributed to the fact that the 

requirements being derived from the soft data for the VID 

situation are to select sensors with higher qualities (due to the 

prevailing weather conditions), which happen to be available 

on costlier platforms. 

Figure 11. presents the PCDRA values obtained by running 

the system with and without soft incident response data. 

Running the system with soft data enabled yielded a 60% 

increase in PCDRA, which translates to a substantial increase 

in the probability of the missions benefitting from soft data  

 

Fig.10. Normalized Soft Data PCDRA, ME, and MR for the Concurrent VID 

and Piracy Events 

 

Fig. 11. Normalized Soft vs No Soft PCDRA Comparison for the VID and 

Piracy Events 

On the 20th of May, coastal radars lost contact with a cargo ship at 

13.538 N, 50.672 E. Following unsuccessful attempts to contact the 
crew, a search mission was launched. Aircraft-3 was assigned a square 

in search pattern. Aircraft-2 was assigned a square in search pattern. 

SlowUAV-3 was assigned a parallel track line search pattern. 
Speedboat-3-A was assigned a square out pattern, and Speedboat-3-B 

was assigned a square out pattern. Tugboat-3-A was assigned a square 

in pattern. Helicopter-3 was assigned a parallel track line search 
pattern. Lastly, Tugboat-3-B was assigned a parallel track line search 

pattern. At the time of the incident, there was moderate rain present 

with extremely dense clouds. 

While underway, an oil tanker was boarded by a group of pirates at 
10.769 N, 54.048 E on August 17th. The intruders were carrying 

automatic rifles. The ship's alarm was sounded and the master was able 

to send a distress call to the coast guard over the VHF radio. The coast 
guard immediately dispatched response assets. FastUAV-0 was 

assigned a track crawl search pattern. SlowUAV-0 was assigned a track 

crawl search pattern. Speedboat-0-A was assigned a track crawl search 
pattern. Lastly, Speedboat-0-B was assigned a track crawl search 

pattern. There was no rain and no clouds during the mission. 

 



TABLE II.  AVERAGE AU VALUES FOR SINGLE VID, SINGLE PIRACY, AND 

CONCURRENT VID AND PIRACY EVENTS 

Experiment Configuration Average AU 

Multi-risk-event (VID and Piracy) 35% 

Single-event VID 27% 

Single-even Piracy 30% 

 

being successful. These observed results match the anticipated 

PCDRA relations outlined in Expected Trend 1. 

Table 2 0presents the average AU values obtained by 

running the system with the three different configurations. The 

findings presented are in line with Expected Trend 4. The 

average AU in the multi-risk-event configuration was 

approximately 35%, whereas in the single-event VID and 

single-event piracy incident, it was approximately 27% and 

30%, respectively. At best, the set of 27% and set of 30% of 

assets used in the two sequential situations is disjoint (i.e., the 

intersection of the 27% and the 30% set of assets is the null 

set); this would amount to a total of 57% of average AU – 

significantly higher than the 35% average utilization in the 

multi-situation simulations. This desired decline in average 

AU occurring when the system is considering concurrently 

unfolding risk events also translates into smaller average 

response costs – about 20% lower, as compared to the sum of 

the averages of the costs in the sequential, single situations. In 

practice, however, these two sets will be rarely disjoint, 

meaning that if the system were only considering single event 

scenarios, there would be a conflict in the selected assets 

between the different events (i.e., one asset being chosen to 

concurrently participate in more than one risk event), 

inevitably complicating the response selection process left to 

the human operator. These results thus present a tangible 

benefit from an AU, a cost effectiveness perspective, and 

ultimately, a response selection perspective. 

V. CONCLUSIONS 

The soft-data-augmented Course of Action (CoA) 

generation techniques proposed in this research have been 

validated through a simulated maritime domain experiment, 

carried out with three different configurations containing two 

concurrently unfolding risk events. The proposed 

methodology successfully generated viable responses with a 

number of conflicting objectives whilst providing higher 

chances of overall mission success whenever soft incident 

response data was utilized in the system. The experiment 

further demonstrated how the CoA methodology is able to 

more optimally assign assets to ongoing incidents, through its 

multi-situation handling capabilities. 

Future work entails adding Level 2 (L2) and Level 3 (L3) 

High-Level Information Fusion support for a wider variety of 

risk events (e.g., smuggling, vessel coopering, illegal fishing), 

and employing analytics algorithms in the soft data sources to 

identify risk event trends for the purpose of anticipating future 

events and thus generating proactive CoAs, so as to deter or 

fully prevent them from occurring (e.g., in the case of 

anticipated pirate attacks). Another research direction is 

evolving the search patterns used by the assets during the 

execution of the response missions. The patterns used in this 

work are part of the chromosome encoding, but are currently 

only mutated between assets; future work could entail 

decomposing these search patterns into collections of sub-

pattern elements, and evolving (mutating and crossing over) 

these finer-granularity elements for the purpose of generating 

new, dynamic, and potentially more effective patterns. 
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