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Abstract—We present our results on the definition of a formal
and interactive situation model improving comprehension of
situations and supporting reasoning on projections of situations.
The model is based on the rough sets and allows the creation
of lattices that fuse the elements of an environment according to
different perspectives and requirements of interest for a human
operator. To support rapid decision making on dissimilarities
between recognized and projected situations, we adopt some
measures defined on the lattices. In many scenarios, like in
emergency response, this can support the generation of early
warnings that may help the human operators in identifying future
dangerous events. An early evaluation has been accomplished by
considering an illustrative case study based on real scenarios for
management of vessel traffic.

Index Terms—Situation Modelling; Rough Sets; Decision Sup-
port Systems; Lattice-based Knowledge Representation

I. INTRODUCTION AND MOTIVATION

In complex and dynamic environments, having good situa-
tion awareness (SA) is essential to make rapid and coherent
decisions. Roughly speaking, SA means to be aware of what is
happening in the environment, by understanding the meaning
of the perceived information, interpreted by using the correct
mental models. From a computational viewpoint, situations
are representations of individual pieces of raw information
(like sensor data) at a higher level of abstraction, in terms of
domain-relevant concepts. Regrettably, achieving good SA is
not a trivial task. In [1], Endsley analyzed the main reasons of
human difficulties in achieving and maintaining proper levels
of SA. Part of the main results of her work was a taxonomy
of the common issues that hinder a good SA. Most of the
errors are related with the difficulty in perceiving data and
assigning a correct meaning to it. This happens especially due
to poor mental models that do not allow human operators to
understand part of the information. In our opinion, such a
critical issue can be softened by means of: i) proper computa-
tional and explicit models of situations, which can be directly
seen and manipulated by the human operators; ii) techniques
and approaches that allow the human operators to analyze
the situations, to reason about them, project them into the
future and track their evolution over the time. Such approaches
should be concretely implemented in human computer interac-
tion techniques and in decision support systems able to sustain
the process of SA formation and the rapid decision making.

Many models and computational approaches for situation rep-
resentation, identification and projection have been proposed
so far [2]. Specifically, situation identification techniques are
usually divided into two categories [3]: learning-based and
specification-based techniques. The former, which comprises
techniques like Naive Bayes, hidden Markov model, neural
networks, have the capability to identify situations even in an
unsupervised way, but usually they do not provide a formal
and explicit model of the situations. This may represent an
issue in sustaining a deep understanding of the perceived
information by the human operators, as it is not possible for
them to “see” the situation and to interact with it. The second
category consists of ontological approaches, fuzzy cognitive
maps [4], evidence theory and other logic-based techniques.
Such models have the powerful capability of formally and
explicitly representing the situation, but usually they are not
so flexible as to adapt to the users’ interactions or to adapt to
heterogeneous domains without substantial modifications.

In this work, we present a computational model of situations
that is formal, explicit and actionable (in the sense that it
helps in making rapid decisions) based on rough sets theory.
The situation is represented by means of: i) an information
table that contains the main elements of the environment (i.e.,
objects) and their attributes and ii) a lattice that graphically
represents such a table according to different, user-defined,
information fusion criteria. It supports the comprehension
of the current situation as it provides the human operators
with detailed insights on the current state of the environment
by means of the information table and with an interactive
approach for reasoning on the situations thanks to the lattice
that evolves over the time. Such a lattice supports the reasoning
on group of similar or undistinguishable objects (thus reducing
the number of elements the human operators need to observe)
and it supports also the reasoning on future evolutions and
projections of situations. In such sense, it can accelerate the
decision making processes. Moreover, the model is flexible as
it is possible to change the information fusion criteria for gen-
erating a different lattice (that provides a different viewpoint
on the data) even at run-time. It is also a formal model, as it
is based on rough set theory, thus enabling the possibility to
compute measures of similarity among lattice structures. Such
measures are useful for quantifying the differences among



situations at different time intervals. It can be exploited in the
definition of interactive systems for SA, as human operators
can change at runtime the set of attributes on which they want
to focus on or they can change the information fusion criteria.
Lastly, the proposed model is domain-agnostic.

II. THEORETICAL BACKGROUND

A. Situation Awareness

A widely accepted definition of situation awareness is that
proposed by Endsley [5], which considers three levels of SA:
level 1 (Perception) refers to the perception of elements in the
environment; level 2 (Comprehension) is the comprehension
of the meaning of such elements in relation to goals and objec-
tives; level 3 (Projection) regards the projection of their status
in the near future. Such three levels should not be intended as
sequential and linear, but they are iterative, as comprehension
drives the search for new data, and the perception of new data
feeds the comprehension process. Systems and applications
leveraging on such model, for supporting users in gaining and
maintaining high level of SA in decision making processes,
need to be proper designed. A fundamental component of
situation awareness design process is the phase of analysis of
goals and requirements. This can be realized by following the
Goal-Directed Task Analysis (GDTA) [6] methodology, which
is a cognitive task analysis focusing on the goals that human
operators must achieve and the information requirements they
need to make informed decisions. The result of GDTA is
a hierarchical structure establishing the requirements of the
system and representing the users’ goals. Such an approach
will be exploited in our work in order to define the initial
information table on which the lattices can be constructed
following some information fusion criteria.

B. Rough Sets

In this work we base our approach on the rough sets
originally proposed in [7] and further investigated by several
scholars. In particular, we leverage on the results of Yao, e.g.
[8] [9], for the creation of lattices of partitions that are at the
core of our situation model. Rough sets are usually adopted to
formally approximate a set with a pair of sets which give the
lower and the upper approximation of the original set. At the
core of this formalism, there are the concepts of information
system and indiscernibility (or indistinguishability) relation.
More formally, let us consider I = (U,A) an information
system, where U is a set of objects and A is a set of attributes
such that a : U → Va for every a ∈ A, where Va is the set
of values that a can take. An information table IT assigns a
value a(x) from Va to each attribute a and object x in the
universe U . Given any subset of attributes, E ⊆ A, we can
define an equivalence relation as:

IND(E) = {(x, y) ∈ U × U |∀a ∈ E, a(x) = a(y)} (1)

IND(E) states that x and y are indiscernible (or indistin-
guishable) by attributes from E. An equivalence relation can
be defined based on a set of attributes in an information table
so that two objects are equivalent if and only if they have the
same value on every attribute. Given an equivalence relation
E, we can define an equivalence class:

[x]E = {y|y ∈ U, x E y} (2)

Suppose H ⊆ U is a set of objects we want to describe,
or approximate, with the equivalence classes. With rough sets
we can approximate H by constructing its lower and upper
approximations:

apr(H) = {x|x ∈ U, [x]E ⊆ H} (3)

apr(H) = {x|x ∈ U, [x]E ∩H 6= 0} (4)

III. A COMPUTATIONAL APPROACH FOR SITUATION
MODELLING AND REASONING

We report in this section the approach proposed for rea-
soning on situation and gathering early warning signals on
situation projections. The idea is to model a situation as
a lattice of partitions, where a partition represents a set
of objects/elements that are fused according to GDTA level
2 requirements. Starting from a situation modelled with a
lattice, a set of projections may be derived by changing some
attributes of the objects/elements. The formalism behind the
approach is based on rough sets described in section II and
the overall approach is depicted in Fig. 1. The starting point
is a GDTA [6] providing requirements for the three levels
of SA. From SA level 1 requirements, we can define an
information table reporting on the rows the objects/elements
to be perceived at level 1, O1, ..., On, and on the columns the
attributes, a1, ..., am. We can also add an additional column
with a decisional attribute to classify the level 1 objects but
this is not reported in the figure. From this information table,
we can group objects that satisfy particular criteria by defining
appropriate functions. For instance, let be U the universe of all
the objects to be perceived and let define a distance function
D : U ×U → R+. For each d ∈ R+ we can define, using the
formalism proposed in [8], a neighbourhood of x:

nd(x) = {y|D(x, y) ≤ d} (5)

where d is a threshold, x and y are level 1 objects. In this case,
the subset of attributes related to position is used to create
a group of objects. Another example may concern grouping
objects that are indistinguishable with regards to one or more
attributes. For this purpose, we can use directly a relation such
as Eq. (1). In this case, for instance, if a subset B is the
subset of attributes related to the velocity of an object, we
can fuse objects that are equivalent with respect to speed. In
this way, taking into account the constrain that SA level 2
requirements pose on the criteria to fuse information, we can



Fig. 1. Overall approach

define a lattice of partitions where each partition represents a
group of objects that are equivalent with respect to a subset
of attributes. For instance, S0 represents a situation where
objects {O1, O2} and {O3, O4} are equivalent with respect
to B. This structure may be refined by considering different
nested subsets of attributes. In fact, if we consider C ⊂ B
we may discern the four objects in S0. It is worth mentioning
that using incremental learning approaches, such as the one
described in [10], the information table may be incrementally
updated when attributes values vary over time, and this implies
updating the corresponding lattices structures. If we consider
all the subsets of attributes that can be also nested, e.g.
... ⊂ C ⊂ B ⊂ A, it is possible to derive a set of lattices such
as S1, ..., Sn, and some of them can be possible evolutions
of the recognized situation S0. A human operator may have a
good mental model and expertise to foresee possible evolutions
starting from a recognized situation, such as S0, but he/she
may rather have some difficulties in reasoning on conceptual
and informative differences among the possible evolutions
and/or between a recognized situation and its evolution. The
following subsections provide details on situation modelling
with the rough sets formalism and on heuristics to support
rapid reasoning on situation projections.

A. Situation Model based on Rough Sets

A situation modelled with the rough set theory is a com-
bination of an information table IT and a lattice of parti-
tions LB over a subset of attributes B. Formally, we define
S =< IT,LB > where IT is an information table and B ⊆ A
is a subset of attributes used to partition the elements of the en-
vironment. The lattice groups objects with respect to a specific
criterion, usually embedded in SA level 2 requirements. Thus,
for instance, if we use the formalism of Eq. (5) the lattice
groups neighbour objects. If we use Eq. (2), the objects are
equivalence classes. From the perspective of a human operator,
the tuple < IT,LB > is more informative with respect to
other situation models. In fact, besides having information on

the attributes of all the objects of an environment, the human
operator has a human-readable structure that gives information
on groups of objects that are equivalent with respect to the
criteria of his/her interest. As mentioned, if B is the subset
of attributes related to trajectory or speed or other criteria,
lattice LB gives rapid information on the objects that are
indistinguishable with respect to these attributes. The human
operator can set the criteria of his/her preferences, giving rise
to different subsets of attributes and look at the equivalent
objects.

Another interesting aspect of modelling situations with
rough sets is the concept approximation, i.e. the possibility
of approximating an unknown concept with a known concept,
with the support of three regions. Let be [x]E a group of
objects indistinguishable with respect to the subset E. Let
us reason on the objects of an environment, and suppose we
include in IT a decisional attribute ad that allows to classify
these objects with respect to a class (e.g. "safe"). So, in this
case, the situation model is S =< IT ∪ Ad, LE >, where
Ad is the set of decisional attributes. Suppose H ⊆ U is a
subset of objects we want to describe, or approximate, with the
equivalence classes. With rough sets we can approximate H by
constructing its lower and upper approximations as described
by Eq. (3) and Eq. (4) that can be also interpreted in terms of
regions:

POS(H) = apr(H) (6)

NEG(H) = U − apr(H) = {x|x ∈ U, [x]E ∩H = 0} (7)

BND(H) = apr(H) − apr(H) =

{x|x ∈ U, [x]E ∩H 6= 0 , [x]E * H} (8)

Eq. (6) is the positive region and includes all the equivalence
classes hat can be positively classified as belonging H , Eq.
(7) is the negative region and includes objects that can be
definitely ruled out as members of H and Eq. (8) is the



Fig. 2. Classification based on probabilistic rough sets

boundary region consisting of objects that can neither be ruled
in nor ruled out as members of the target set H .

This can be done also introducing a degree of tolerance as
reported in [11]. We can introduce three-way decision rules,
namely, positive rules for accepting an object to be a member
of H , negative rules for rejecting, and boundary rules for
deferring a definite decision. Let P (H|[x]E) be the conditional
probability of an object belonging to H given that the object
belongs to [x]E . This probability can be estimated as

P (H|[x]E) =
|H ∩ [x]E |
|[x]E |

(9)

where |.| is the cardinality operator. If we consider probabilis-
tic rough sets [11], a pair of thresholds α and β with α > β
can be introduced, and by using the conditional probability
defined in Eq. (9), the three regions in Eq. (6), Eq. (7) and
Eq. (8) can be formulated as follows:

POS(H) = {x|x ∈ U, P (H|[x]E) ≥ α} (10)

NEG(H) = {x|x ∈ U, P (H|[x]E) ≤ β} (11)

BND(H) = {x|x ∈ U, β < P (H|[x]E) < α} (12)

Fig. 2 shows the regions we can define on the basis of
probabilistic rough set model. The value of these three regions
for a human operator is easy to explain. Suppose H is the
subset of objects that for a specific situation are classified as
"safe" or "good". When a class of equivalence, i.e., a group
of objects indistinguishable with respect to some criteria,
is recognized in the current situation, with the support of
Eq. (10), a human operator may know if this class can be
approximated with the set of "good" or "safe" objects. This
can improve the comprehension of the human operator.

B. Evaluation of Situation Projections

In this section we present two measures that can help a
human operator on reasoning on situations and their evolu-
tions. Let us define the lattice more formally. Let be F (x) a
non empty family of partitions (e.g. of equivalence classes or
neighbourhoods), defined over a sequence of nested attributes,
e.g. A3 ⊃ A2 ⊃ A1. We define the equivalence relations on
this sequence of subsets I = EA3

⊂ EA2
⊂ EA1

⊂ E0 =
U ×U . The union of these families for all the elements of an
universe defines a lattice of partitions:

L = ∪|U |i=1F (xi) (13)

We can define a dissimilarity measure [12] between two
lattices as

Dis(L1, L2) =
1

|U |

|U |∑
i=1

|L1(xi)4 L2(xi)|
|U |

(14)

where |L1(xi) 4 L2(xi)| is the cardinality of a symmetric
difference between the family of partitions: |F1(xi)∪F2(xi)|−
|F1(xi)∩F2(xi)|. The symmetric difference removes the com-
mon elements between two partitions, and can be considered
as a sort of dissimilarity between the two structures. We can
define the similarity as:

Sim(L1, L2) = 1−D(L1, L2) (15)

Eq. (14) and Eq. (15) can be used for early evaluation of the
projections of a situation. Starting from the situation at time
t0, defined by the tuple S0 =< IT,LB > over a subset B
of attributes, a human operator with a good mental model for
projection can foresee the evolution on some parameters of one
or more objects, and update the information table. This will
create new situations S1, ..., Sn that are possible projections
of S0. These projections may be evaluated with respect to S0

by using Eq. (14) and Eq. (15) to understand if they differ or
not. The human operator can also decide to change the subset
of attributes for the creation of lattice structures representing
projections, and this can be useful if the criteria behind SA
level 3 requirements differ from the ones of SA level 2. Also in
this case, Eq. (14) and Eq. (15) can give rapid information on
differences with respect to the status quo. Lastly, the partitions
of the projected situations may be classified according to the
three-way decision rules, to approximate the new classes of
the projected situations with the known ones. This can help in
improving the comprehension of the projected situations.

C. Added value of the approach

The proposed approach is based on a situation model that
is formally described, interactive and human-understandable.
Furthermore, it offers to human operators a high degree of
flexibility that consists in the possibility of showing different
perspectives of a situation by allowing the selection (in an
interactive way) of different subsets to be used for creation
of partitions. We consider the following added values for a
human operator in modelling situations as described:

• improving perception and comprehension, via the provi-
sion of explicit information on the status of each element
to be perceived and of a human readable structure such
as the lattice of partitions

• supporting the reasoning on different possibilities of
forming partitions, by allowing him/her to identify dif-
ferent subsets of attributes that may match different SA
level 2 criteria to fuse objects

• improving comprehension of the situations with concept
approximation and classification, allowing a human op-
erator to approximate the partitions of a lattice structure
with known concepts



Fig. 3. Drifting angle [15]

• supporting rapid decision making with measures of dis-
similarity between recognized and projected situations.

It is worth noting that the adoption of a formal setting based
on rough sets has also additional benefits in SA applications
that we need to further investigate. In literature there are
several example of rule induction from incomplete datasets,
such as [13], and classification under incomplete information
[14] that can be very useful in concrete operational scenarios
where sensor data may be lost or where the information
is incomplete. Moreover, there exist several approaches for
attribute reduction in rough sets and the concept of reduct,
i.e., the subset of attributes which can fully characterize the
knowledge in the information table, can be useful to model
situations for which the dynamic of the elements/objects of
the environment can be precisely characterized by a subset of
attributes. This aspect has both computational and cognitive
benefits since it allows a reduction of the information table
and allows human operators to focus attention on the correct
aspects of the information.

IV. CASE STUDY: VESSEL TRAFFIC

A. Scenario

In the maritime domain, it is crucial to understand why
certain vessels movements take place. Normal and secure
conditions are related with the movement of a ferry that
always sails between two harbors. If the ferry moves on a
different route, a possible threat may have happened. For
instance, the engine may have broken or the ferry may be
hijacked. A surveillance operator, by observing the routes
of the vessel between the two harbors, can identify such
dangerous situations and proceed to further investigations.
In such situations, the human operator intervenes because
he/she knows (i.e., he/she has the right mental model) the
normal behavior of vessels in the observed environment,
and so he/she can identify abnormal conditions [15]. But,
in case of many vessels, different kind of ships and heavy
traffic, a human operator may be not able to early identify
dangerous and abnormal situations. In the following example,
we consider a scenario of drifting vessels in order to
demonstrate how the proposed model of situations can be
helpful in supporting human operators to anticipate abnormal

Fig. 4. Position and drifting angles of the five vessels in the case study.

TABLE I
INFORMATION TABLE FOR THE VESSEL TRAFFIC SCENARIO

Velocity Drifting Angle
Distance

from coast Type Decision
V1 LOW LOW FAR Cargo S
V2 LOW MID NEAR Ferry D
V3 MID LOW MID Cargo S
V4 MID MID MID Research S
V5 MID LOW FAR Research S

conditions and to be early warned of possible dangerous
situations. A vessel may start to drift due to engine failure,
that makes the vessel uncontrollable. A vessel is said to
be drifting [15] when it is moving slowly, usually with a
velocity v(t) between 3 and 5 knots, and its course c(t)
and orientation h(t) have a significant difference, usually
more than 30°, as depicted in Fig. 3. We want to identify
potential drifting vessels for supporting the human operator
in understanding the movements of such vessels, so to
early act for keeping safe the overall situation in the stretch
of water under control. Let us consider the information
table in Table I that reports the values of a group of
5 vessels in an area under maritime surveillance by the
human operator. The position and the drifting angles of
the vessels are depicted in Fig. 4. In particular, we assume
that the set of attributes A of the information table is A =
{V elocity,DriftingAngle,DistancefromCoast, Type},
whose elements may assume the following values:

• Velocity: 1) LOW (0 knots < v(t) ≤ 5 knots); 2) MID
(5 knots < v(t) ≤ 15knots); 3) HIGH (v(t) > 15knots)

• Drifting Angle [c(t) − h(t)]: 1) LOW (≤ 15°); 2) MID
(> 15° and ≤ 30°); 3) HIGH (> 30°)

• Distance from the coast: 1) NEAR (≤ 2miles); 2) MID
(> 2miles and ≤ 10miles; 3) FAR (> 10miles )

• Type: 1) Cargo (commercial vessel); 2) Ferry (a ferry that
usually moves between two points); 3) Research (vessel
designed to perform research at sea).

The column Decision represents the decisional attribute that
will be used in section IV-C for classifying the set of vessels:
D stands for dangerous while S for safe.



B. Supporting Situation Comprehension

Let us suppose that, at time t = t0, the human operator
selects, as the criterion for information fusion, the attribute
Drifting Angle, by using the equivalence relation of Eq. (2).
As a result, we have a subset B = {DriftingAngle} ⊂ A,
which leads to the following equivalence subclasses of vessels:
{V1, V3, V5} and {V2,V4}. With this partition, we obtain
the lattice showed in Fig. 5.A. Even with this simple lattice
that has been constructed just with one attribute out of 4
four, the human operator knows which group of vessels needs
attention: {v2,v4}, because the drifting angle of such vessels
may be an hint of a drifting situation. The human operator
can further verify if such situation holds by considering
another attribute, which could be the velocity of the vessels.
Formally, we consider the sequence of nested attributes C =
{Drifting Angle, V elocity} ⊃ B = {Drifting Angle}. In
this way, the lattice of Fig. 5.A evolves in the lattice of Fig.
5.B, which represents the situation at time t = t0 with further
details. The lower level of the lattice shows that the vessel V 2
can be a potential drifter as its velocity is LOW and the drifting
angle is MID. The other vessel V4 has a higher velocity, and
so, with the available information, it can not be considered a
drifter as its engine works well. Thus, it is possible that the
vessel V4 is doing a normal and safe maneuver. Obviously,
the human operator can use other information, as this becomes
available, in order to further improve the comprehension of
what is happening in the monitored environment, by analyzing
it with evolving lattices. The human operator, by leveraging
on his/her mental model and experience, on the basis of the
information represented via the lattice and the information
table, decides if the identified situation can be considered as
still safe or it requires some actions to avoid accidents.

C. Classification of the objects with conditional probability to
improve comprehension

The support to the comprehension of the human operator
can be enhanced by using a decisional attribute for classifying
the state of each vessel (i.e., the movement of the vessel is safe
or dangerous). Indeed, it is possible to calculate the probability
of each group of objects (in the lattice) belonging to the class
of safe objects. In this way, the human operator can exclude a
set of objects from further investigations as they are classified
as being safe, and he/she can concentrate his/her effort on
a (possible) smaller set of vessels. The decisional attribute
(shown in the last column of Table I) can be obtained by
employing some domain rules, which can be defined by the
experts during the GDTA process. In this table S = Safe
indicates that the current movement of the vessel can be
considered as normal and safe, and D = Dangerous indicates
the opposite situation. Using such attribute and Eq. (10), Eq.
(11) and Eq. (12), it is possible to enhance the lattice of Fig.
5.A with an indication of the dangerousness of each group of
vessels. Let us consider the class S of safe vessels. According
to the information table I, S = {V 1, V 3, V 4, V 5}. Then,

considering again the equivalence relation with respect to the
set B = {DriftingAngle} ⊂ A, resulting in the lattice of
Fig. 5.A. At the lower level of the lattice, we had two subsets
{V1,V3,V5} and {V2,V4}. We want to classify these two
subsets in the three regions of decision POS(S) (containing
groups of safe vessels), NEG(S) (containing groups of not
safe vessels), and BND(S) that contains the group of vessels
that can not be classified with the available information.
By evaluating the conditional probability P (S|[h]B) of a
vessel belonging to the class of Safe objects S, we obtain:
P (S|{V 1, V 3, V 5}) = 1 and P (S|{V 2, V 4}) = 0.5. Now,
suppose that α = 0.63 and β = 0.25 (such values are
defined by Yao in [11]), we can classify the two subsets in
this way: POS(S) = {V 1, V 3, V 5}, BND(S) = {V 2, V 4}
and NEG(S) = {}. This means that the group of vessels
{V 1, V 3, V 5} is safe, while we defer the decision about
the classification of the set {V 2, V 4} when considering
only the attribute Drifting Angle. By considering also the
information on the velocity of the vessels (lattice of Fig.
5.B) we have: P (S|{V 1}) = 1 and P (S|{V 3, V 5}) =
1, P (S|{V 2}) = 0, P (S|{V 4}) = 1, and consequently:
POS(S) = {{V 1}, {V 3, V 5}, {V 4}}, BND(S) = {} and
NEG(S) = {V 2}. In this case, the human operator is aware
that the vessel V2 needs particular attention as it is classified as
a potential drifter, while he/she can leave out the other vessels
from further investigations.

D. Supporting Situation Projections

In order to understand the possible evolutions of the sit-
uations, the human operator performs a what-if analysis by
considering a different value for one or more attributes. In
particular, starting from the lattice L0 of Fig. 5.B, the human
operator supposes that the angle of vessel V2 will increase in
the near future. By applying the same sequences of nested at-
tributes {Drifting Angle} ⊂ {Drifting Angle, V elocity},
and the new value for the Drifting Angle of V2, the lattice
L0 will evolve in the lattice L1 of Fig. 5.C (the differences
between the two lattices are circled in red). By comparing the
two lattices, the human operator observes that a new concept
appears in the second lattice at the intermediate level of the
hierarchy of granulation. Indeed, the subset {V 2, V 4} is split
in {V 2} and {V 4} due to the new value for the drifting angle.
By using the dissimilarity function of Eq. (14), it is possible
to quantify the differences between the two lattices and the
related situations: Dis(L0, L1) = 0.2. The human operator
evaluates the new situation and he/she can easily understand
that the vessel V 2 can become a drifter as the drifting angle
will be higher. Considering that the new projected situation dif-
fers from the previous one, he/she can perform some actions in
order to maintain the same situation as the one at time t = t0.
The human operator can simulate also other scenarios. For
instance, he/she can suppose that vessel V2 will not increase
its angle, but it increases its velocity. Another lattice will be
obtained, as depicted in Fig. 5.D. The intermediate level of
the hierarchy is not modified, while the two subsets {V 2} and



Fig. 5. Evolving lattices according to the analysis made by the human operator in the case study. A) Initial lattice with set B={Angle} at time t0; B)
Lattice with sequence of subsets of attribute B={Angle} ⊂ C={Angle, Velocity} at time t0; C) Lattice of one possible situation projection at time t1 with
V2.Angle=HIGH; D) Lattice of another possible situation projection at time t1 with V2.Velocity=MID.

{V 4} at the lower level are merged in one subset {V 2, V 4}.
In this case, the situation becomes safer than the previous
one, as vessel V2 increases its velocity and so it can not be a
drifting vessel. This can be a situation more desirable than the
previous one. Accordingly, the human operator can perform
some actions (e.g., contacting the commander of vessel V2)
in order to modify the current situation for obtaining the
projected one. As described in section IV-C, if we have a
decisional attribute associated with the projected situations,
it is possible to classify each group of vessels as being safe
or not. This allows us to evaluate automatically the projected
situations, helping the human operator in deciding which can
be the best action to perform (e.g., “Will the vessel Vi be
in a safe position?”, “Can I maintain the current situation?”).
Moreover, it is possible to use the data gathered by sensors
in order to compute the situation at each time interval by
supposing that some particular attribute may change.

V. CONCLUSION AND FUTURE WORKS

This work proposes a framework based on Rough Sets the-
ory for representing situations, offering an interactive approach
for reasoning on situations and obtain different perspectives
on the elements of the environment. It supports and enhances
the comprehension of the current situation and its possible
evolutions, sustaining rapid decision making. In future works,
we plan to evaluate the approach in wider and heterogeneous
scenarios. Moreover, we will design interfaces and dashboards
in which the users can interact with the lattices representing
the identified situations. We plan to implement such interfaces
to enhance decision support systems based on Situation Aware-
ness in several domains, like logistic [16] and commerce [17].
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