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Abstract— The application of autonomous systems is on an 

increase, and there is the need to optimize the fit between 

humans and these systems. While operators must be aware of the 

autonomous systems dynamic behaviors, the autonomous systems 

must in turn base their operations, among other things, on an 

ongoing knowledge of operators’ cognitive state, and its 

application domain. Psychophysiology allows for the use of 

physiological measurements to understand an operators behavior 

by noninvasively recording peripheral and central physiological 

changes while the operator behaves under controlled conditions. 

Electroencephalography (EEG) is a psychophysiological 

technique for studying brain activation. In the present study, 

EEG task engagement index, defined as the ratio of beta to 

(alpha + theta), are used as inputs to an artificial neural network 

(ANN) to allow identification and classification of mental 

engagement. Six separate feedforward ANN with single hidden 

layer trained by backpropagation were designed to classify five 

mental tasks for each of six participants. The average 

classification accuracy across the six participants was 88.67 %. 

The results show that differences in cognitive task demand do 

elicit different degrees of mental engagement, which can be 

measured through the use of the task engagement index. 
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I. INTRODUCTION  

The application of automated and autonomous systems is 
on an increase, and there is the need to optimize the fit between 
humans and these systems. For example, in an autonomous or 
highly automated work environment where the operators’ role 
is primarily monitoring the system, there is very little overt 
operator performance to observe in order to determine whether 
or not the operator needs adaptive aiding. Adaptive aiding 
improves performance of system by providing automation 
when the operator needs it [1]. Furthermore, in such 
environments, the functional state of operators may be 
monitored in order to determine when to provide the aid. 
Previous research suggests that physiological measures such as 
EEG ([2], [3]) may be sensitive to unpredictable changes in 
cognitive load making them useful for adaptive automation. 
EEG signals represent summed postsynaptic potentials of 
neurons firing a rate of milliseconds. Graphically, an EEG is a 

graph of the time varying voltage difference between an active 
electrode attached to the scalp and a reference electrode [4]. 

EEG may be analyzed in the time (event related potentials), 
frequency (spectral) or time-frequency domain. Event related 
potentials (ERPs) represent the brains neural response to 
specific sensory, motor or cognitive events. They are computed 
by averaging EEG epochs time-locked to a specific event [5]. 
However, ERPs fail to capture brain activity related to stimulus 
processing that is not time-locked to event onset [6]. The 
frequency bands in an EEG signal are delta (less than 4Hz), 
theta (4–8Hz), alpha (8–12Hz), beta (12–30Hz), and gamma 
(30–80Hz) [6]. During highly controlled cognitive tasks, the 
spectral composition of EEG changes in response to changes in 
task difficulty or level of alertness [7]. Spectral analysis 
involves quantifying amplitude or power of a certain frequency 
band. This approach is able to capture brain activity related to 
stimulus processing that is not time-locked to stimulus onset. 
Time-frequency analysis involves quantifying the spectral 
energy over time. It maps the 1-dimensional EEG time-domain 
signal into a 2-dimensional function of time and frequency.  

In order to determine the operator functional state, 
physiological measures recorded during task performance are 
combined by a classifier. Classifiers such as artificial neural 
networks (ANN) have been used to obtain estimates of 
operator functional state. Data that represent the cognitive 
states of interest from each operator separately or data obtained 
from a group of similar operators are used to train the 
classifier. Afterwards, the trained classifier is continuously fed 
with physiological data during performance of a task. The 
classifier uses these data to estimate the operator functional 
state. When the classifier detects that the operator needs 
assistance, it notifies the system so that the operator will be 
provided the right automation [1].  

Pope, Bogart, and Bartolome [8] developed the first brain-
based adaptive system that used an EEG-based task 
engagement index. The system used a bio-cybernetic loop that 
was formed by changing levels of automation in response to 
changes in mental workload demands. Of the candidate indices 
that they evaluated, Pope, Bogart, and Bartolome [8] found that 
the engagement index based on the ratio beta to (alpha + theta) 
was the most sensitive. Further studies undertaken by Freeman, 
Mikulka, Prinzel, and Scerbo [9] confirmed the effectiveness 
of the beta to (alpha + theta) index. They reported improved 



performance in a vigilance task when the engagement index 
was used to drive changes in the stimulus presentation. In 
another study, Berka et al. [10] found that engagement and 
workload increased significantly during encoding of verbal and 
image-learning and memory test compared with recognition or 
recall period.  

Other researchers have explored the task engagement index 
in determining the cognitive states of human participants. For 
example, in one study Szafir and Mutlu [11] employed the task 
engagement index formula to study how participants interacted 
with an adaptive robotic agent that monitored attention in real 
time and adapted its behavior to improve the discourse. The 
agent monitored attention levels of participants and detected 
attention drops. In another study Szafir and Mutlu [12] 
designed and implemented a system that employed the 
engagement index to monitor participants’ attention to 
educational material in real time. This adaptive system 
suggested the optimal review topic. Huang et al. [13] presented 
an EEG-augmented reading system that monitored the 
engagement levels of children in real time, and provided 
contextual BCI training sessions to improve the children’s 
reading engagement. McMahan, Parberry, and Parsons [14] 
compared three different EEG engagement indices (frontal 
theta, ratio of beta to (alpha +theta), ratio of frontal theta to 
parietal alpha) by assessing user engagement during various 
video game modalities. They found beta to (alpha + theta) to be 
the best algorithm for calculating the engagement levels of 
players playing video games.  

Research has shown that classifiers using physiological 
features are able to determine the level of cognitive activity in 
tasks with a high level of accuracy. King, Nguyen, and Lal [15] 
employed ANN that used the magnified gradient function 
(MGF) technique to detect and classify early driver fatigue. 
The MGF reduced the time required for training by modifying 
the standard back propagation (SBP) algorithm. The ANN 
classified professional driver fatigue with 81.49% accuracy and 
non-professional driver fatigue with 83.06% accuracy. Khare, 
Santhosh, and Anand [16] compared the performance of five 
ANN methods (Gradient Descent Back Propagation, 
Levenberg-Marquardt, Resilient Back Propagation, Conjugate 
Learning Gradient Back Propagation, and Gradient Descent 
Back Propagation with momentum) for classification of 
planning of right hand movement with respect to an awake 
relaxed state. Wavelet packet transform (WPT) was used for 
feature extraction of the relevant EEG signals. The Resilient 
Back Propagation method showed the highest performance 
with the accuracy of 95%. Chai, Tran, Craig, Ling, and Nguyen 
[17] examined the classification between fatigue and alert 
states using an autoregressive (AR) model-based power 
spectral density (PSD) as the features extraction method and 
fuzzy particle swarm optimization with cross mutated of 
artificial neural network (FPSOCM-ANN) as the classification 
method. Using 32-EEG channels, they obtained a classification 
accuracy of 80.51%. Classification using fewer (eleven frontal) 
EEG channels resulted in 75.65% classification accuracy. 
Belakhdar et al. [18] detected the occurrence of driver 
drowsiness onset based on the Artificial Neuronal Network 
(ANN) and using only one EEG channel. They conducted an 
experiment on ten human participants using nine features 

computed from one EEG channel using the Fast Fourier 
Transform (FFT). After introducing these features in an ANN 
classifier, Belakhdar, Kaaniche, Djmel, and Ouni [18] obtained 
a classification accuracy rate of 86.1% and 84.3% of 
drowsiness and alertness detection.  

Although previous studies are suggestive of the potential of 
classifiers using physiological features to determine the level of 
cognitive activity in tasks, some questions still remain. Of 
particular interest is the question of whether or not task 
engagement indices (TEIs) can be used as features for 
classification of cognitive tasks. In particular, it has yet to be 
demonstrated that TEIs can serve as features to optimally 
discriminate recorded brain signals. We address this issue by 
employing TEIs as input to ANN to allow identification and 
classification of mental engagement. We propose that 
differences in task demand will elicit different degrees of 
mental engagement, which could be measured through the use 
of the task engagement index.  

This paper is outlined as follows. First, we describe the 
EEG data acquisition and pre-processing, time-frequency 
representation, and classification processes under the 
methodology section. Next, we present the results and 
discussion. Finally, we draw conclusions. 

II. METHODOLOGY 

A. EEG Data Acquisition and Pre-processing 

The EEG data used in this study was originally collected by 
Keirn and Aunon [19], and was downloaded from the website 
of the Brain-Computer Interfaces Laboratory of the Colorado 
State University [20]. The participants were seated in an 
Industrial Acoustics Company sound controlled booth with 
dim lighting and noise-less fan (for ventilation). An elastic 
electrode cap was used to record EEG signals from positions 
C3, C4, P3, P4, O1, and O2 (shown in Figure 1), defined by the 
1020 system of electrode placement [21]. The electrodes were 
connected through a bank of Grass 7P511 amplifiers and 
bandpass filtered from 0:1–100Hz. Data was and recorded at a 
sampling rate of 250 Hz with a Lab Master 12 bit A/D 
converter mounted in an IBM-AT computer. Eye blinks were 
detected by means of a separate channel of data recorded from 
two electrodes placed above and below the participants left 
eye. Continuous EEGs were recorded for 10s during each task. 
For each of these tasks, participants were instructed to not 
vocalize nor gesture in any way. In the present study, data from 
six participants performing five mental tasks were analyzed. 
The five tasks are baseline, multiplication, letter composition, 
geometric figure rotation, and visual counting. For each task, 
participants were instructed not to vocalize or gesture in any 
way. The baseline task was an eye opened task in which 
participants were asked to relax as much as possible. This task 
served as a reference task against which the other tasks were to 
be compared. In the multiplication task, participants were 
given nontrivial multiplication problems, such as 49 times 78, 
and were asked to solve them without vocalizing or making 
any other physical movements.  

In the letter composition task, participants were instructed 
to mentally compose a letter to a friend or relative without 



vocalizing. In the geometric figure rotation task, participants 
were asked to visualize a particular three-dimensional block 
figure being rotated about an axis. In the visual counting task, 
the participants were asked to imagine a blackboard and to 
visualize numbers being written on the board sequentially. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data was recorded for 10 seconds during each task and 
each task was repeated five times per session. With a 250 Hz 
sampling rate, each 10 second trial produced 2,500 samples per 
channel. Data from six participants were used. All data 
analyses were performed offline with MATLAB [22], 
EEGLAB [23], and custom code. 

 

 

 

 

 

 

 

 

 

 

Fig. 2 shows the raw recorded EEG for participant 1 during 
the multiplication task. To remove linear trends, the data was 
high-pass filtered with basic Finite Impulse Response (FIR) 
filter with 1 Hz as the lower edge frequency. The data was 
rereferenced to average. The independent component analysis 
(ICA) can help correct EEG data contaminated by signals of 
non-neural origin. In the present study, the SASICA software 
[24] was used to reject artifact independent components (ICs) 
before EEG data analysis. 

B. Time-Frequency Representation 

It is extremely important to find a suitable representation 

of EEG signals in order to reliably discriminate and 

understand extracted relationships [25]. The original recorded 

EEG data used in the present study were time domain signals. 

Several techniques exist for spectral estimation and 

representation of EEG signals. Among these is the Fast 

Fourier Transform (FFT) which allows for the efficient 

estimation of the component frequencies in data from a 

discrete set of values sampled at a fixed rate. However, for 

signals whose frequencies change in time (like EEG), the FFT 

has disadvantages. The FFT cannot provide simultaneous time 

and frequency localization, which means that the power 

spectrum does not provide information about when certain 

frequencies occur in the signal. It is therefore not very useful 

for analyzing time-variant, nonstationary signals like EEG. 

This problem is overcome by using the Short Term Fourier 

Transform (STFT). The STFT segments the signal into narrow 

time intervals, and takes the Fourier Transform (FT) of each 

segment. Each FT provides the spectral information of a 

separate time-slice of the signal, providing simultaneous time 

and frequency information. The STFT was used in the present 

study. It was used to estimate the power spectrum of the EEG 

bands. This was implemented with the spectrogram function 

in MATLAB. The spectrogram computes an FFT-based 

spectral estimate over each sliding window and allows for the 

visualization of how the frequency content of the signal 

changes over time. The spectrogram function divides a signal 

into segments. Long segments or windows (also known as 

narrowband spectrogram) provide better frequency resolution 

whereas short segments (also known as wideband 

spectrogram) provide better time resolution. In the present 

study, the data was segmented into quarter-second windows 

with a 50% overlap of the previous segment and 50% of the 

next. The Hann window which has good frequency resolution 

and reduced spectral leakage was used. The log power, 

calculated as, 10 log10(power) of the data in each window was 

computed for the theta band (4-8Hz), alpha band (8-12Hz), 

and beta band (12-30Hz). 

Fig. 3 shows the 3-D spectrogram visualization of the 

multiplication task for participant 1. The yellow colors 

indicate frequency content with higher power while the blue 

colors indicate frequency content with very low power. For 

each participant under each of the five cognitive task, for each 

trial, and for each of the six channels (C3, C4, P3, P4, O1, and 

O2), the task engagement index given by Equation (1) from 

Pope, Bogart, and Bartolome [8] was computed. This resulted 

in a total of 6 features (task engagement indices) per trial per 

task. In order to avoid features in greater numeric ranges 

dominating those in smaller numeric ranges [26] each feature 

was linearly scaled to the range (0, 1). 

 

TEI = beta power / (alpha power + theta power)      (1) 

 

 

 

 

 
Fig. 1. Electrode placement. 

 

 
Fig. 2. Recorded raw EEG signal for participant 1 during the 

multiplication task. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Classification 

First, data for each participant were classified separately. 
Six separate feedforward ANN each with single hidden layer 
trained by backpropagation were designed to classify the five 
tal tasks (baseline, multiplication, letter, geometric figure 
rotation, and visual counting) for each participant. Second, a 
single feedforward ANN was designed to classify the five tasks 
for all participants. The trainbr network training function in 
MATLAB was used for all the networks. Trainbr generally 
works best when the network inputs and targets are scaled so 
that they fall approximately in the range (1, 1) [22]. It updates 
the weight and bias values according to Levenberg-Marquardt 
optimization. An ANN may suffer from overfitting, a situation 
where the network memorizes the training samples, but 
performs poorly on new datasets. Regularization may be used 
to improve ANN generalization and avoid overfitting. The 
trainbr network function used in the present study uses 
Bayesian regularization which takes place within the 
Levenberg-Marquardt algorithm. It minimizes a combination 
of squared errors and weights, and then determines the correct 
combination in order to produce a network that generalizes 
well [22]. The performance function used for all networks was 
the mean square errors (MSE). The MSE is the distance 
between the ANNs estimate of the test data and the actual test 
data. The data for each participant were analyzed separately. 
The default dividerand function, which randomly separates 
targets into three sets (training, validation, and testing), was 
used for all networks. For the training of each network, the 
algorithm was allowed to run until the effective number of 
parameters has converged. Each training stopped with the 
message “Maximum MU reached.”  

The best performing single layer feedforward ANN (with 
least MSE) for each participant was determined by varying the 
number of hidden nodes from 10 to 50 in steps of 5. A total of 
ten ANN was analyzed for each participant. Out of the ten 
ANN analyzed, the one with the least MSE was chosen and its 
classification accuracy was obtained.  

To determine the best performing ANN (with least MSE) 
for all participants, the number of hidden nodes of single layer 
feedforward ANN and two layer feedforward was varied from 
10 to 50 in steps of 5 for the first layer, and from 5 to 20 in 
steps of 5. For each n-layer (n =1 and 2) feedforward ANN, a 

total of forty ANN was analyzed. Classification accuracy for 
the best performing ANN was obtained. 

III. RESULTS AND DISCUSSION 

Table I shows the classification results of the single layer 
ANN for each participant. The classification accuracy of 64% 
for participant 6s ANN with 30 neurons in its hidden layer was 
the highest. It also had the highest number of epochs, and 
highest MSE of 0.1223. The classification accuracy of the 
ANN for participants 1, 3, and 4 is 100%. The ANN for 
participant 5 produced the lowest classification accuracy of 
62% with 50 neurons in its hidden node. The average 
classification accuracy across all participants was 72.3%.  

TABLE I.  CLASSIFICATION RESULTS OF 1-LAYER ANN FOR EACH 

PARTICIPANT 

Participant 

Number 

Of 

Hidden 

Nodes 

Epoch MSE 
Classification 

Accuracy 

1 50 89 3.80 x 10-16 100 

2 45 4750 0.08 72 

3 40 115 6.90 x 10-17 100 

4 40 125 1.27 x 10-12 100 

5 20 311 2.18  x 10-16 96 

6 30 5238 0.12 64 

Average  Classification Accuracy 88.67 

 

The performance plot and network diagram of ANN for 
participant 1 are shown in figures 4a and 4b respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. 3-D spectrogram visualization of the multiplication task for 

participant 1. 

 
Fig. 4a. Performance plot of ANN for participant 1. 

 
Fig. 4b. Network diagram of ANN for participant 1. 



The confusion matrix for the ANN designed for participant 
1 and participant 2 are shown in figures 5a and 5b respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task engagement is defined as effortful striving towards 
task goals [27]. The TEI measures how cognitively engaged a 
person is in a task. In the present study, each participant was 
presented with five different cognitive tasks. Each task was 
expected to elicit a different degree of mental engagement. We 
used TEIs as inputs to ANNs to allow identification and 
classification of mental engagement. The average classification 
accuracy across the six participants was 88.67%. The 
classification accuracies for participants 2 and 3 were relatively 
low. This is partly because an ANN is data driven and is prone 
to small datasets. Both participants had the least datasets of 
size 25. In addition, it took a relatively longer time for their 
networks to converge, 4750 epochs for participant 2, and 5238 
for participant 3. The datasets for the remaining ANN were 
relatively large; 50 for participants 2, 3 and 5, and 75 for 
participant 4. 

Our results show the sensitivity of TEI to different types of 
cognitive processing demand. Furthermore, our results show 
the extent to which TEI can be used to distinguish different 

cognitive tasks. The ability to unobtrusively and continuously 
monitor operator mental states in operational environments 
where operator movements and physical activity are somewhat 
constrained, could be beneficial in finding more efficient and 
effective methods for humans to interact with technology [10]. 
EEG indices have been found to be reliably associated with 
varying levels of decision making tasks, and thus show 
promise as candidates for directing adaptation in augmented 
cognition [28]. One domain where the classification of TEIs 
can be applied is adaptive decision aids. Classification results 
may be used to modify an operator’s decision making task via 
adaptive aiding with the goal of enhancing overall performance 
[29]. The decision aid may adapt to an operator in a particular 
cognitive state at a specific time. Decision making tasks can 
adaptively be allocated between the decision aid and the 
operator so as to minimize task delay time, subject to 
maintaining human workload at a satisfactory level [30]. 

 

IV. CONCLUSION 

Differences in cognitive task demand elicit different 
degrees of mental engagement. These differences can be 
measured through the use of the task engagement index which 
is correlated with task demands. The task engagement index 
may serve as features for identification and classification of 
mental engagement of cognitive tasks. Our study contributes to 
the elaboration of the utility of EEG indices in general, and 
task engagement index, in particular to optimizing the fit 
between humans and autonomous systems. 
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