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Abstract— Vision is vital to decision making, as humans 

naturally trust their eyes to enhance situation awareness. Yet the 
modern age has overwhelmed humans with massive amounts of 
visual information, which is problematic in time sensitive and 
mission critical situations, such as emergency management and 
disaster response. More efficient search and retrieval systems 
address some of these issues, which is why many seek to develop 
and extend Content Based Image Retrieval (CBIR) techniques to 
support situational awareness in a more autonomous fashion. 
However, there is currently no adequate system for CBIR to 
support situational awareness in dynamic and sensor rich 
environments. This research proposes an extensible framework 
for CBIR to support a holistic understanding of the environment 
through the automated search and retrieval of relevant images 
and the context of their capture. This constitutes assisted CBIR 
as embodied in the multi-sensor assisted CBIR system (MSACS). 
We design the MSACS framework and implement the core CBIR 
system of MSACS using the state of the art Bag of Visual Words 
paradigm. The system is evaluated using a dataset of GPS tagged 
images to show favorable precision and recall of spatially related 
images. Applications for localization and search for Wi-Fi access 
points demonstrate improved situational awareness using the 
system. Assisted CBIR could enable vision based understanding 
of an environment to ease the burdens of information overload 
and increase human confidence in autonomous systems. 
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I. INTRODUCTION 
Humans rely upon visual information and understanding 

when operating in time sensitive and mission critical situations. 
However the exponential increase in visual information in the 
present time has not guaranteed increased effectiveness of the 
human decision maker. This is most problematic in dynamic 
environments such as those that characterize disaster response 
and emergency management where situations change rapidly. 
Time sensitive and mission critical implications may demand 
reestablished visual perception of the dynamic environment. 

Human instincts for visual understanding could be 
supported with wide scale distribution of cameras in the 
environment either deployed by the responding organization or 
from voluntary contribution by smartphones. Distribution often 
includes its own issues with information overload and data 
quality from large sets of contributed images that are poorly 
labeled and/or indexed. There are many potential applications 
for automating visual understanding, which include change 

detection for detecting emergent events [1], object recognition 
for identifying structures, landmarks or items of interest (guns, 
cars, fires, etc.) [2], facial recognition to detect persons of 
interest [3], structure from motion (SFM) [4] to create a 3D 
image of an area affected by a disaster, simultaneous 
localization and mapping (SLAM) [5], visual odometry [6] and 
localization for navigating an environment affected by loss or 
unavailability of GPS. Many of these applications often require 
images that bear similarity to or match other images and make 
use of image features for the computer to automate visual 
understanding. 

By extension, a framework for dynamically building and 
retrieving useful images from image repositories based on the 
image content could improve processing efficiency, thus, 
situational awareness. Content based image retrieval (CBIR) 
systems return a set of ranked digital images to a user based on 
a query; where queries come in many forms, such as text and 
images. The system can be used to parse, query, filter and 
catalog large amounts of images to automatically feed 
computer vision applications, bridging the gap between human 
and computer understanding of dynamic environments.  

A CBIR system that is assisted by other sensed information 
could provide further granularity for the application. Hardware 
miniaturization and advanced processing algorithms have 
enabled a sensor rich environment. The proliferation of sensors 
is an everyday facet of modern life, as smartphones and the 
internet of things find increased utilization. One may benefit 
from magnetometers, barometers, or Wi-Fi sensors as one 
builds an operational view of a dynamic environment but 
correlating image and sensor data can be difficult if not linked 
at the point of capture. This information could assist in 
understanding the context of an image and may improve image 
search. However, no system integrates the rich sensor 
environment with indexing, search and retrieval of the image 
repositories. 

The opportunity to exploit images from a dynamic, sensor 
rich environment calls for assisted CBIR, which integrates 
search and retrieval mechanisms for image content with other 
environmental context. We introduce a framework for assisted 
CBIR with the multi-sensor assisted CBIR system (MSACS). 
This framework is supported by a CBIR system which utilizes 
the Bag of Visual Words (BoVW) approach for image search 
and retrieval. We utilize Google Map’s street view to automate 
the building of an image repository to be stored in the open 



source database Cassandra. The database enables updates for a 
self-building world model and queries to improve situational 
awareness. A localization application demonstrates the ability 
to leverage GPS information in the event of outages and Wi-Fi 
Access Point lookups.  

This paper is organized as follows: Section 2 discusses the 
background and related works of CBIR and CBIR frameworks. 
Section 3 discusses the MSACS system framework 
requirements and system overview to implement assisted 
CBIR. Section 4 describes the implementation and evaluation 
of our working system, and finally, in Section 5, we present 
conclusions and discuss future work. 

II. RELATED WORK 
 CBIR has been hypothesized for situational awareness 
scenarios to aid, for example, emergency services or forensic 
inquires. In [7-8] the authors suggest moving away from a text-
based image retrieval system for hospitals and police stations 
because the text annotations, or metadata, are subjective in 
nature. Instead they propose using CBIR to quantize color and 
texture data to link together mugshots with visual evidence, or 
by proposing a patient’s diagnosis based on past diagnoses 
using x-rays, scans, etc. Similarly to [7-8], in [9] the author 
proposes a CBIR system for matching visual evidence with 
past cases to determine patterns and matches. This system also 
uses relevance feedback which applies user inputs to assist in 
narrowing down CBIR results. In [10] the authors use color 
and texture features to create a CBIR system to detect wildfires 
within images. These results are annotated with social media 
tags from Flickr and used for information dissemination during 
the Colorado wildfires of 2012. The results showed that CBIR 
along with social media serve as an alternative source of 
information dissemination and possible emergency services 
mobilization. This credits the concept of employing CBIR for 
dynamic situations such as disaster response and emergency 
management, but none of the prior works have aimed to 
incorporate a self-building image repository and capture 
environmental context from sensors.  

 CBIR searches a digital library (e.g., a database) of images 
using the visual content extracted from a query image. This 
visual content can be color, texture, shape, or any salient data 
able to be extracted from an image. To extract data from an 
image requires the use of open-source or proprietary 
algorithms. Parsing an image with a feature extraction 
algorithm will quantize the visual content within the image. 
Once this visual information is quantized it can be stored in a 
database along with any other relevant information associated 
with the image such as file name, location, etc. for future 
search and compare operations. In our work, we use the state of 
the art Bag of Visual Words paradigm [11] since it abstracts 
important features for situational awareness applications seen 
in scene reconstruction, navigation and object recognition. 

Several CBIR frameworks propose to extract and quantize 
image features, store quantized data in a database, and return 
similarity results based on a user query to the system. In [12] 
the authors create a framework in which the CBIR system 
relies on multiple types of image features, which were referred 
to as multimodal features. The CBIR system extracts color, 

texture, and shape features from an image. Multimodal features 
are used in CBIR systems because [13] demonstrated that 
CBIR systems which use only one type of image feature do not 
perform as well as those which use multiple features. Therefore 
our system is designed to make use of multiple feature types to 
improve its image retrieval capability. 

There are frameworks that perform CBIR based on hybrid 
features and fused features. In [12] the authors combine color, 
texture, and shape features and create a feature vector. In [14] 
the authors create a framework for color image retrieval by 
combining low level features of color, texture, and shape 
information in an image. In [15] the authors use multiple shape 
features as the means of image retrieval. The first, second, 
third, and fourth shape moments are extracted which creates a 
global shape descriptor. They also implement probabilistic 
classification clustering to classify global shape descriptor as a 
known class. Once the class is known, a comparison of the 
query to images of that class is conducted. The authors of [16] 
implement a multimodal CBIR framework using speeded up 
robust features (SURF), contour and edge detection, and text 
search. Thus, their CBIR framework makes use of not only 
image content, but also textual data. Our framework could 
make use of image features along with other data as in [16]; 
however our extraneous data is collected from sensors which at 
the time of image capture. This sensor data will be used in our 
modular framework to improve search retrieval and accuracy. 

 CBIR is used to support applications as in [17], where the 
authors use latitude and longitude data to automatically 
annotate new images captured and uploaded to Flickr. Thus, 
these new images within a similar geographical location will be 
tagged with labels from other tagged images that currently 
exist in the Flickr database. Our system replicates this work to 
demonstrate its usefulness and adds Wi-Fi access point lookups 
through the Wigle API [18].  

 With these areas of study in the domains and application of 
image retrieval, we pursue a framework and implementation 
that extends towards assisted CBIR to improve situational 
awareness. 

III. MSACS FRAMEWORK 
Assisted CBIR will extend the ability of autonomous 

entities to understand the environment by linking the content of 
images with sensed inputs. In this section, we expose the 
design process for the Multi Sensor Assisted CBIR System 
(MSACS) by developing requirements, describing the system 
and its key components. 

A. Operating Concept 
The concept of multi-sensor assisted CBIR is the 

integration of sensed information in the environment at the 
moment of image capture within the indexing, search and 
retrieval process. This concept can be distributed in its 
operation, allowing for populate/update operations to be 
distinct from query/response ones. In this way, known 
information from the populate/update stage can be linked to 
real-time queries. The results from the queries can be used to 
propel applications that gain situational awareness of the 
environment through image repositories.  



The assisted CBIR operating concept is illustrated in Fig. 1. 
As shown, cameras and sensors in the bottom half of the figure 
may publish images annotated with sensed information within 
a populate/update use case. As frequent updates are essential to 
minimizing consistency issues between world model and 
reality; the top half of the figure illustrates use cases that 
support this objective through queries/responses from 
autonomous entities and users. The concept also supports 
image queries to receive similar images as returned values. 
Non-image queries such as Wi-Fi, magnetometer, and other 
modules can also retrieve images of relevance. These are built 
upon a distributed network and database to support scalability 
for world model building and querying. The proposed method 
of naming images would concatenate a unique node name with 
a time stamp created during image capture. 

Fig. 1. Assisted CBIR operating concept 

B. MSACS System Requirements 
Because the framework needs to ingest, parse, and maintain 

large amounts of text data related to image and sensor features 
from several sources, this drives four requirements. First, the 
data obtained from the sensor modules must be associated with 
an image and incorporated in search and retrieval. Thus at a 
minimum an image is required to perform the most basic form 
of CBIR. With this, the core functionality of image retrieval is 
necessary and we aim to support simple or complex processing 
algorithms to do this, such as state of the art for CBIR, the 
BoVW paradigm. 

Second, the framework has to be extensible. The extensible 
sensor modules (implemented in Python), define simple 
interfaces that includes a data reading function and a database 
populate function. Configuration files will be used to specify 
proper relationships between processing modules at the time of 
operation. 

Third, data should be stored in well-established formats 
such as XML or JSON. It was decided that JSON be used, as it 

is more lightweight than XML; any existing XML data is 
converted to JSON as it is parsed. A scalable, distributed 
database will allow this data to propagate efficiently if used in 
a networked environment. A database function within the 
module file instructs the framework to create new columns in 
corresponding to the type of information collected by that 
module.  

Fourth, we need to expose raw and processed data to 
support applications. In this use case, a user queries the 
MSACS application programming interface (API) with data 
from a camera, Wi-Fi sensor, and magnetometer. For example, 
a user may perform self-localization in an unfamiliar 
environment. The localization application can access data 
through the API. The following summarizes our requirements 
for MSACS. 

1. The framework shall support image-based CBIR using 
simple or complex processing, such as BoVW, and 
incorporate these additional inputs to improve search 
and retrieval. (Assisted CBIR).  

2. The framework shall be extensible, supporting multiple 
sensor inputs and processing of these inputs. 
(Extensible) 

3. The framework shall use a standardized data format, 
and be supported by a scalable, common database 
across platforms. (Scalable and Portable) 

4. The framework shall support post processing to enable 
image annotation and application interfaces. (API) 

These requirements serve as the basic design concepts for 
our prototype of MSACS. They address the basic high level 
design decisions in our system, detailed next. 

C. MSACS System Overview 
The core of the MSACS is displayed in Figs. 2 and 3. As 

shown in Fig. 2, MSACS incorporates data obtained from 
additional sensors. As data is captured it is stored in file-based 
folder structures enabling it to be assigned a time stamp (t0, t1, 
…, tn) for first-in first-out processing operations. The types of 
captured data processed depend on the modules currently 
loaded and incorporated into the framework.  

 
Fig. 2. Proposed assisted CBIR modules 



All data is read into the framework as XML or JSON, with 
the exception of the image capture. Each sensor has a specific 
framework module which parses sensor-related data to extract 
and then quantize information for storage in a database. For 
illustration purposes the data presented in Fig. 3 is shown as 
XML. After quantization the individual feature vectors are 
appended to the image as annotations and archived for later 
retrieval. The database will be available for search and retrieval 
operations once it contains data. This data supports a 
localization application tied to our first use case. 

Our framework is not limited to a single database. However 
for the purposes of this prototype only a single database is 
used. Cassandra databases have the capability to shard and 
exchange information depending on their configuration, so we 
select this as our database due to the potential scaling needs. 

To the right of Fig. 3, applications can access the MSACS 
API to make use of the assisted CBIR data. For example, a 
localization application can utilize the known latitude and 
longitude information in the database and provide an inference 
of the latitude and longitude for the query image. This is 
accomplished by averaging the latitude and longitude of the 
images in the return set. The cardinality of the return set is user 
defined in a framework configuration file. The performance of 
the localization application is affected by the return set size as 
shown in the evaluation section. The result of the localization 
application is a pair of latitude and longitude coordinates 
returned to the user.  

D. Assisted CBIR Description 
Assisted CBIR extends the BoVW approach to support 

MSACS, as shown in Fig. 3. The module consists of a model 
generation stage and a query stage. The BoVW generation 
stage extracts features, performs clustering, generates a 
codebook, and then populates a database against which query 
images can be compared. The query stage performs an 
exhaustive search and comparison of query images within the 
database.  

 
Fig. 3. MSACS framework 

BoVW [11] is an adaptation of Bag of Words (BoW) 
information retrieval paradigm generally associated with text 
documents. In BoW a histogram of word frequencies in a 
document is computed. This BoW histogram can then be used 
for information retrieval problems. An inverted index can be 
created from the BoW histogram to give greater search weight 
to terms that occur less frequently in a document. This 
improves a document’s searchability within a database.  

In BoVW a similar approach is taken. In BoVW style 
CBIR, SIFT features [19] are extracted from images. For even 
greater codebook discrimination, search engines often utilize 
the RootSIFT [20] feature to describe the image features in the 
corpus. A codebook is generated by quantizing image features 
by using a clustering algorithm over all detected features. The 
clustering algorithm, typically k-means, determines k-unique 
cluster centers [21]. To calculate the k cluster centers, an 
iterative process initializes with k random centers. In the 
iterations, feature vectors are matched to the closest cluster 
center and new cluster centers are chosen as the mean of all 
assigned features. These k cluster centers become the codebook 
which is later used to describe query images. The k-value for 
k-means clustering is user-defined. The codebook is 
maintained separately from the database. Codebooks can be 
precomputed for different environments. A codebook from one 
environment will not provide the same performance as a 
codebook intended for another environment. 

Each cluster center in our codebook represents one word in 
our BoVW model. All images in the repository are described 
by how their extracted features are quantized according to the 
codebook. In essence, the codebook is used to create a BoVW 
histogram for each image. This BoVW histogram can then be 
compared to other BoVW histograms from a dataset or query 
to determine a similarity or distance metric. This method is 
faster than matching features across an entire corpus every time 
a query is submitted.  

In the query stage the images in the query set are compared 
against those in the dataset. The RootSIFT algorithm is applied 
to these images and a k-bin BoVW histogram based on the 
codebook is created for each image. Each query image’s 
histogram is then exhaustively compared against the corpus 
histograms in the database. The user is able to specify the top L 
results from the image search.  

Because the histograms can also be represented as 
quantized vectors, the distance between them can be calculated 
as a similarity metric. For the purposes of this CBIR system the 
cosine distance is calculated between the query image 
histogram and each image in the corpus. The images in the 
corpus are ranked by the images that have the largest cosine 
distance from the query. For two histograms, a query image 
Q=(Q1,Q2,…,Qk) and a dataset image D=(D1,D2,…,Dk) are 
compared by the cosine distance which is calculated as: 

  (1)  

To make this assisted CBIR the additional sensor modules 
are tied to the framework with a Python interface. When added, 
the modules enable filtering of results. This filtering provides 
greater fidelity resulting in multiple levels of search. By having 



multiple levels, search can be hierarchically arranged, reducing 
the number results at every level to save indexing. A set of 
returned images from the image query will be reduced by 
attributes of the sensor modules, promoting the returns that 
match sensor attributes and demoting those that do not in the 
return results. 

IV. MSACS IMPLEMENTATION AND EVALUATION 
For our experimental evaluation, the prototype of the 

MSACS framework was implemented in Python. This 
prototype made use of several open source libraries such as 
OpenCV, SciPy, NumPy, GeoPy, Basemap, and the Cassandra 
database. The dataset used for evaluation was created using the 
Google Street View API to query and retrieve street-level 
images for a specified evaluation zone so that the localization 
application described in the use-case could be demonstrated. 

A. Core CBIR Implementation 
The core CBIR module within the MSACS framework is 

responsible for extracting point features from images, 
calculating a visual vocabulary, and expressing the content of 
images in the form of a BoVW histogram. The BoVW 
implementation for this experimental evaluation made use of 
several open source libraries to complete these tasks, namely 
OpenCV 3.1.0, NumPy 1.11.0, and SciPy 0.17.1.  

 In the first stage, each image was converted from RGB to 
Grayscale. Once converted, SIFT features are identified and 
descriptors are extracted. These point feature descriptors are 
then recalculated as RootSIFT descriptors to improve their 
matching and differentiability. Next, the descriptors are 
aggregated into a list containing all of the dataset’s image 
descriptors so that centroids can be identified using the k-
means algorithm. Once centroids have been identified, the 
centroid vectors form codewords, known collectively as a 
visual vocabulary or codebook. The codebook is stored by 
serializing the centroid data to be recalled and used later to 
codify images in terms of their visual words. 

In the second stage, vector quantization and histogram 
generation, BoVW signatures are calculated for each image in 
the dataset. This process begins with the quantization of 
feature descriptors using the codebook produced previously. 
The result of this process is a list of visual words, each 
representing a centroid from the visual vocabulary, which 
summarize the content of each image. The number of 
occurrences of each of the k visual words found in an image 
are tallied and used to build an image histogram.  

An example histogram for a k=100 codebook is depicted 
in Fig. 4. The figure summarizes 100 codewords on the 
horizontal axis, labeled by index. The vertical axis depicts the 
frequency of occurrence of each codeword in the image. The 
presence of codewords provide this image with a descriptive 
representation. Once histograms are calculated, they are stored 
in the Cassandra database and are accessed as needed to 
facilitate search and comparison operations. When queried 
with an image, a histogram is computed for the query, the 
cosine distance is calculated against our corpus, and the dataset 
images are ranked by the cosine distance to the query. 

 
Fig. 4. An example BoVW histogram summary for the content of an image 
with a vocabulary size of 100 visual words.  

B. Annotated Image Repository 
Dataset collection was automated by using Google’s Street 

View Image API to download both images and their 
geolocation (latitude and longitude) data. A dataset consisting 
of 1,080 images was collected from New York’s Upper East 
Side in an area of approximately 50 square city blocks.  

The dataset was generated by repeated route planning in the 
Google Maps API. Source and destination points were entered 
to obtain a URL by the API. This URL was fed into an online 
GPS visualizer to obtain an XML-based gpx file. The gpx file 
contains the source and destination points along with several 
intermediate GPS points represented by latitude and longitude 
values. For each latitude and longitude pair in the gpx file four 
images were collected from the street-view API at random 
viewing angles; one from 0-90°, one from 90-180°, one from 
180-270°, and one from 270-360°. The images are 500x500 
pixels in resolution and suffixed with a .jpg extension. The 
query set was created by taking one random image from 0-360° 
at each latitude longitude pair in the gpx file. A Cassandra 
database was used to store information about each image 
including the image name, latitude, longitude, and field of view 
(i.e. the degree orientation) from which the image was 
generated.  

Ground truth was computed by comparing each query 
image against each dataset image to determine if there existed 
a sufficient number of validated feature matches to establish 
the existence of relevant matching visual content between the 
image pairs. For an image to be considered relevant it must 
have a minimum user-defined number of matches. Applying a 
constraint of at least 50 matches across our set of query 
images and dataset images was demonstrated to establish 
relevance with no false positives for a manual evaluation 
performed using a subset of the overall data. A ground truth 
table is constructed of size n-by-m where n is the number of 
query images and m is the number of dataset images. For 
example if our nth query image and mth dataset image are equal 
to or greater than the user-defined feature matching limit then 
position (n,m)=1 in our ground truth table. Otherwise if the 
match constraint is not met then position (n,m)=0. 



C. Image Retrieval Evaluation 
The MSACS CBIR prototype was evaluated using 

precision and recall, the standardized way to evaluate a CBIR 
system. Precision is a measure of how useful the return set of 
images are in response to a query, and will generally correlate 
with a high similarity metric. Recall is a measure of how 
complete the set of return results are in response to a query 
[22]. Precision and recall are calculated as follows: 

   (2) 

          (3) 

In this setting, relevant results were calculated from the 
ground truth table as images that shared at least 50 features 
with the query image. This ensures the possibility of 
performing additional processing using computer vision. To 
be useful for search, most relevant items should appear within 
a tractable amount of retrieved results. As seen in Fig. 5, 75% 
of relevant images are returned with 10% of the total corpus 
size. Tests were conducted with codebook sizes with a k-value 
of 70, 170, 500, and 1000, and it appears that k=170 appears to 
be the best at ordering the first half of returned images. The 
results seem to demonstrate that the system overly generalizes 
at k=70, enabling features which are not instances of one 
another to be codified into the same visual word. For k=1000, 
the system seems to perform best when the return set is in the 
first 10% of the image repository size. This can more clearly be 
seen on a logarithmic scaled version of precision and recall, 
shown in Fig. 6.  

D. Determining Environmental Information 
To enable localization functionality, MSACS can capture 

images and populate a database with their latitude and 
longitude coordinates as in use case 1 when the world model is 
generated. The database could potentially be fed by many 
cameras and there could be many databases making use of 
Cassandra’s ability to scale. Searching with a query image will 
lead the system to begin the search and retrieve operation and 
then execute the localization application  per use case 2. 

Fig. 5. Precision and recall results for various codebook sizes (k) 
 

 
Fig. 6. Precision and recall results, logarthmic scale 
 

A simple approach to show this capability is simply to 
estimate the locations of the top ranked images for a latitude 
and longitude estimate for the query image. For each of the top 
returned dataset images the cosine distances with respect to the 
query images are calculated. If the cosine distance between the 
query and any dataset image is greater than .99, then the 
location of the query image is guessed to be that of the dataset 
image. If the cosine distance of an image is less than .99 then 
the dataset image’s latitude and longitude are added and 
averaged with all other dataset image’s latitude and longitude 
values from the return set. The user is then presented with an 
actual location, guess location and physical distance in meters 
between the actual and guess locations and the distance 
between the two was counted as error. The results of the simple 
localization through coarse averaging among the returned set is 
shown in Fig. 7. The graph further reinforces that the 
discriminating power of the larger k-values in producing a 
more accurate location guess. 

These localization values are averaged guesses over a path. 
In an actual localization application, more sophisticated 
techniques to recognize landmarks and surveyed positions 
within images would increase the certainty of a guess, but we 
reserve this for future work. 

 
Fig. 7. Coarse localization by averaging location from top returns  
 



In a final demonstration, we capture information about 
wireless access points from images in the sensed environment. 
For this, we use location guesses to automate search in the 
Wigle database [18] from a Python script to show, in Table 1, 
that access points can be returned from an image search.  

TABLE 1. WI-FI ACCESS POINT LOOKUP 

Wi-Fi Access Point Latitude Longitude Channel 

00:09:5B:XX:XX:XX 40.765308 -73.967735 1 

02:22:C2:XX:XX:XX 40.765308 -73.967735 10 

20:AA:4B:XX:XX:XX 40.765308 -73.967735 11 

20:C9:D0:XX:XX:XX 40.765308 -73.967735 6 

58:6D:8F:XX:XX:XX 40.765308 -73.967735 11 

68:94:23:XX:XX:XX 40.765308 -73.967735 11 

90:84:0D:XX:XX:XX 40.765308 -73.967735 3 
 

The returned results indicate potential to discern a Wi-Fi 
profile in an environment through image search. It also hints at 
the reverse, where a set of access points can return a set of 
images from an environment that matches the wireless profile.  

V. CONCLUSION AND FUTURE WORK 
Vision plays an important role in the human decision 

making process, but modern technology has caused 
information overload. Making a quick decision can be the 
difference between mission success and failure in time 
sensitive and mission critical situations. The MSACS 
framework, supported by an assisted CBIR system, provides a 
way to search images quickly and bridge the sensor gap.  

Our contribution of the modular framework provided the 
user with an extensible way to support image retrieval in a 
dynamic and sensor rich environment. We designed and 
implemented a framework for an assisted CBIR system, 
incorporating state of the art core functionality using the Bag of 
Visual Words model. The evaluation of our prototype showed 
potential for image retrieval and cross sensor applications. 
Future studies will expand on the development of user 
interfaces and mechanisms for assisted CBIR across a wide 
array of potential applications. In addition, we aim to improve 
search results and expand image repositories. We will expand 
the MSACS prototype with multi-sensor inputs and live test 
experiments using magnetometers, RF receivers and other 
sensors to iteratively improve assisted CBIR. 
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