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Abstract—Human-machine interactions are likely to require
synergistic multidisciplinary research efforts for supporting a
paradigm shift towards collaborative-oriented use cases. An
essential aspect of collaboration is trust and in order to estab-
lish it there is need for human-machine mutual understanding
(HMMU). We argue that achieving HMMU will require evolving
from an approach that reduces human factors as uncontrollable
environmental elements, to one that repositions human emotions
not only as a central part of an integrated control paradigm,
but also as interpretable and steerable through appropriate
information flows and mutual learning cycles. On the strategic
decision-making side, we argue conflict resolution will require
anticipating multiple trade-off situations that include human
factors. On the operational level, symbiotic human-machine
cognitive architectures should embed detected human emotions
as inputs in shared machine control models. Trust measurements
will play the role of mediating task coordination by pinpointing
and dynamically composing appropriate situation-aware interac-
tion protocols. In addition to a vision for HMMU, this paper
proposes a multidisciplinary research strategy that attempts to
unify the isolated efforts of different communities. The proposed
vision is contextualized within a high-level research roadmap to
support near and long-term activities in HMMU.
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I. INTRODUCTION

The rapid deployment of autonomous systems in complex
environments has brought about the need for interaction mo-
dels that allow humans to shape and steer desired behaviors
in such systems, in a safe manner. Modulating and sharing the
control authority between human and computational agents is
gaining notoriety in such cases, since it allows for collaborative
systems that leverage the strengths and reduce the weaknesses
of both humans and machines [1].

In order to build such systems there is need for establish
trust among all parties. Trust helps agents embrace uncertainty
as it obviates supervision, facilitates choice under risk, and can
mediate conflict resolution in collective decision-making [2].
Furthermore, trust can enable decentralization and adaptive
behavior in complex systems [3]. Multidisciplinary efforts are
thus needed for enabling a collaborative society of humans
and autonomous systems and for ensuring both parties can
function synergistically to reach their full potential. Machines
can effectively perform repetitive tasks, can sense and pro-
cess information at faster rates, and can act on situations
that are too complicated for human beings. Properly trained
human operators, on the other hand, have better knowledge of
situations and can internalize perceptions through emotions.
However, there is still need for systems that learn from humans

Fig. 1. Diagram for human-machine mutual understanding and collaboration.

and vice-versa. Those learning cycles need to be mediated by
explanation. DARPA’s new research program on Explainable
Artificial Intelligence corroborates this vision [4].

Therefore, we argue that improved collaboration among
humans and machines require three elements in sequence,
namely, explanation capability, mutual-understanding and mu-
tual trust, as illustrated in Figure 1.

If we want society to benefit from the synergistic effects of
human-machine interaction, we thus need to interface human
feelings and emotions with autonomous systems so that inter-
actions can be perceived by users as more natural, timely, and
effective in attaining collaboration towards a common goal.

II. FROM AFFECTIVE AWARENESS TO TRUST-GUIDED
OPERATIONS

A. The Role of Emotions

In the literature there has been two traditional ways to
model emotions, namely, discrete models and dimensional
models. A widely known example of the discrete type is the
OCC emotion model proposed by Ortony, Clore and Collins
[5], which describes a hierarchy of 22 emotions categories by
evaluating the consequences of events, aspects of objects and
the actions of agents. In dimensional models, on the other
hand, each emotion is represented by a point in a multi-
dimensional space. A widely known one is Russell’s bipolar
circumplex model [6], which has been used in a number
of applications such as robotics [7] and emotion recognition
[8]. Each model has its pros and cons, however Ron Sun et
al. [9] have argued that emotions should not be viewed as
a unitary thing, being rather emergent from the interactions
among many cognitive processes. Therefore, nothing short of a



multi-purpose computational cognitive architecture [10] would
be able to provide a comprehensive mechanistic interpretation
of emotion.

In earlier works in the field of affective computing, Picard
et al. [11] reported an automated process for recognizing
eight different emotions, after collecting 30 days of data from
multiple sensor modalities such as muscle tension, respiration,
skin conductance, and heart variability, which achieved 81
percent accuracy in a lab. In more recent works they developed
what she called the “first wearable affective computer”, which
was used to acquire real-world multi-modal driver stress data.
The major lesson learned from these experiments was that
a single modality - skin conductance - measured from the
electrodermal activity (EDA) gave the highest correlation with
multiple measures of stress, although heart rate and heart-rate
variability were also sometimes helpful.

As the research community becomes aware of the need to
enforce algorithmic accountability [12], designing interaction
protocols that are able to explain how perceived affective ele-
ments are used in specific decisions becomes imperative. Such
affective-enhanced explanations thus serve as a building block
in the effort of establishing mutual understanding between
humans and autonomous systems.

B. Trust in Autonomous and Automated Systems

Mayer et al. [13] defines interpersonal trust as the ”will-
ingness of a party to be vulnerable to the actions of another
party based on the expectation that the other will perform a
particular action important to the ‘trustor’, irrespective of the
ability to monitor or control that party”. We argue that trust
between humans and autonomous systems should follow the
same notion of interpersonal trust.

Most initiatives to evaluate trust of a user on
autonomous/semi-autonomous systems adhere to a
performance-centric trust definition that, according to authors,
is naturally suited for supervisor-worker teams, where the
artificial agent (worker) has no personal motivations as it
collaborates with the humans (supervisor) towards a unified
goal [14]. These strategies usually perform trust evaluation
based on the human interactions [14] [15] (e.g. control
inputs) or based on some evaluation of the efficiency of the
agent itself [16] (e.g. how close can a robot follow a given
trajectory). Different task delegation strategies are proposed
in Burnett et al. [17], some of them based on monitoring
effort levels applied by a trustee. Those strategies allows for
utility-based models for decisions such as whether to delegate
a task and to whom in scenarios requiring collaboration.

Our vision favors a trust-based model, where trust is de-
fined not only by performance but also by mutual understand-
ing between agents. Artificial agents should be able to perceive
how their human counterparts are emotionally influenced by
each decision while also being able to explain their actions.

Another common concept is that of human-centered au-
tomation, where there is an assumption that the human should
always play the primary role in a task execution. Therefore,
the human bears the ultimate responsibility for the system’s
safety [18]. This assumption is based on the notion that the
user usually has more knowledge of the world state and of

its implications than the artificial agent has. In our current
technological state we disagree that the human will always
have more knowledge than an artificial agent, although it
may have complementary insights about certain situations.
Therefore, we argue that responsibility should be shared among
all parties based on each actor’s strengths and weaknesses.

III. A PATH TO MUTUAL-UNDERSTANDING

As seen in Figure 1, in order to reach the capability
of explanation there is need for affective-guided operations
and situation-aware interactions. Through explanation it is
possible to reach understanding (mutual-understating proto-
cols, in Fig. 2) among agents, which in turn allows for trust
(trust-guided operations, in Fig. 2). In order to address this
challenge, we present a roadmap for Human-Machine Mutual
Understanding (HMMU) and cooperation, as seen in Figure 2.
Safety, resilience and adaptability are the main drivers, which
can be strengthened by the milestones devised in the roadmap.

Research in machine intelligence, biophysical signal pro-
cessing, robotics, and communications enable the desired mile-
stones, which can be achieved by employing the technologies
and capabilities seen in the multi-disciplinary layers.

Emotions are powerful enhancers of performance and may
spread rapidly among groups of people, whether in physical or
virtual spaces [19]. Each emotional state can interfere on at-
tention, disposition, reaction time, sometimes deviating people
from safety and primary objectives. Proper implementation of
cognitive and affective models are key for achieving affective-
guided operations. Enhancing descriptors of system states
with perceived user emotions and other human factors, and
fusing them with contextual features can also augment human-
machine joint situation awareness [20], leading to situation-
aware interaction protocols (i.e. SIP).

Engineering machines that are able to understand users and
operators, and to communicate back what they perceive will
enable shared control and generate virtuous mutual learning
cycles in which both parties can strengthen collaboration. The
ability of communicating perceived situations (e.g. levels of
urgency) in natural language is crucial in modes of interac-
tion such as autonomous handover, where incipient studies
on the effects of different messages on user emotions (e.g.
annoyance) are being conducted [21]. Research in natural
language interaction among autonomous systems and humans
is expected to become more relevant as European citizens
might soon have a right to request explanations of decisions
taken by algorithms that affect them. This was concluded
by examining a data protection law called the General Data
Protection Regulation (GDPR), approved in April 2016. EU
member states are expected to enforce the law in 2018.

Besides mutual-understanding protocols, in order to reach
trust-guided operations, there is need to evaluate different
types of existing interaction models and propose new ones,
if necessary. Then it will be possible to propose models
that represent trust levels between interacting agents. As a
consequence of trust, we envision collaborative operations.
In order to achieve this milestone, there is need for investi-
gating affective analytics technologies and integrate them with
multiple interaction modalities, such as haptic feedback, that



Fig. 2. A roadmap for human-machine mutual understanding and collaboration. For better clarity, full (black) arrows are connections between elements from
different layers and dotted (red) arrows denote intra-layer connections. Boxes with rounded corners are non-mandatory.

can be integrated into and mediated by distributed human-
machine cognitive agents that are capable of sharing the control
responsibilities based on mutual-understanding principles.

Achieving the HMMU vision will lead to an integral
and symbiotic relationship between humans and autonomous
systems, thus unifying and amplifying natural and machine
intelligences grounded on trust and collaboration, and therefore
leading to better aligned values, goals, and purposes.
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