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Abstract—Increasingly complex contested environments force
analysts to combine many different types of intelligence data to 
form a more cohesive picture of the environment. Information
fusion systems include computers that integrate and synthesize 
information from multiple sources and humans who combine
that information with reasoning abilities and knowledge of past 
events to assess situations and predict future states.  The intent of 
this paper is to highlight the importance of understanding human 
cognition and decision making by presenting the hypotheses of 
our current research. The purpose of the future study described 
in this paper is to investigate how the degree of information 
acquisition automation used affects the human’s ability to detect 
patterns in data that may be needed to reach higher levels of 
information fusion. This study will use a 2 (task type: intuitive, 
analytic) x 3 (amount of automation: none, half, all), between 
subjects experimental design. We expect to find a significant 
interaction between task type and amount of automation. For 
tasks that induce the human’s intuitive system, increasing 
automation is expected to disrupt the human’s ability to 
recognize patterns. However, for tasks that induce the human’s 
analytic system, increasing automation is expected to improve the 
human’s ability to discern patterns. The results of this research 
can inform guidelines for the design of common workspaces to 
support human-machine teaming in future information fusion 
systems.
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I. INTRODUCTION 

With increasingly complex contested environments, 
analysts must now integrate diverse intelligence data to build a 
cohesive picture of the environment. Today’s sensor 
technology, with the ability to collect vast amounts of data at a 
rapid pace, should enable intelligence analysts to make more 
sense of the world than ever before. However, this access to 
increasing amounts of data comes at a cost. Very large volumes 
of highly heterogeneous, complex data have long been shown 
to hinder analysts’ sense-making process [1]. Machine fusion 
systems are critical for simplifying complex data, identifying 
the most relevant data, and displaying data in a way that aids 
analyst interpretation and decision making. 

Information fusion is a process of integrating and 
synthesizing information derived from multiple sources [2].
High-level fusion requires an awareness of complex relations 
between past and future events as well as present knowledge 
and expertise, making humans’ roles significant and crucial to 
the success of this process [3]. Because the human is essential 
to the process, information fusion systems can be viewed and 
understood as human-machine teams. Adding automation has 
been found to have both positive and negative outcomes on 
task performance. Automating parts of a task can free up 
resources to allow the human to better perform other tasks.
However, automation has been blamed for task degradation
and poor situation awareness in the event of automation failure 
[4, 5]. A solid understanding of human cognition allows 
information fusion workspaces to be designed in a way that 
will enhance the human’s ability to recognize patterns in the
information.

The intent of this paper is to highlight the importance of 
understanding human cognition and decision making by 
presenting the hypotheses of our current research on how 
automation can influence the ability of people to recognize 
patterns. We begin with a brief summary of information fusion, 
human-machine teaming, and human cognition research to 
identify a research gap that could impede the development of 
effective common workspaces in information fusion systems. 
We then present an experimental design for investigating the 
differential effects of automating information acquisition on 
intuitive verses analytic processing. We will reiterate the 
expected results and discuss the significance of this research 
for the design of information fusion systems.

The Data Fusion Information Group (DFIG) model [6], an 
extension the earlier Joint Directors of Laboratories (JDL) data
fusion model [7], distinguishes between different levels of 
fusion based on the goals of the fusion process. Low level 
fusion (Levels 0 and 1) concerns numerical data and is 
performed by machines. Level 0, Data Assessment, uses pixel 
or signal level data association and characterization to 
hypothesize the presence of a signal and estimate and predict 
its observable states. Level 1 fusion (Object Assessment) 
combines data on target objects for identification. Levels 2 and 
3, considered high-level fusion, are typically performed by 



humans. Level 2, Situation Assessment, aggregates the target
information with the goal of identifying meaningful events and 
activities to increase understanding. Level 3 fusion goes a step 
further by assessing impacts relative to mission objectives, and 
includes goals such as estimating threat levels, predicting 
decision outcomes, and determining vulnerabilities and 
possible courses of action [8, 9]. The current research focuses
on levels 0-3 of the information fusion process as it is at these 
levels where pattern recognition is most important (see [10] for 
a discussion of higher levels of information fusion).

Humans and machines bring different strengths to the 
information fusion process. Machines are more efficient at 
combining structured, hard (machine-derived) data. Humans 
are currently better than machines at combining soft (human-
derived) data as it is usually unstructured [11] and uncertainty 
levels are unknown [12, 13]. One human role is frequently to 
support automated computer reasoning techniques with visual 
and aural pattern recognition and semantic reasoning [14].
However, as previously acknowledged within the information 
fusion literature [15, 16], there is little emphasis on how to 
present information to aid the human’s ability to recognize 
patterns and reason about the information. Viewing an 
information fusion system as a human-machine team with 
shared goals should encourage system designers to consider 
human factors aspects. Humans and machines must work 
collaboratively and respond in a situation-adaptive manner for 
true human-machine co-agency to exist [17]. In many domains, 
this harmony cannot be realized because, ultimately, a machine 
does not have values and cannot be held accountable for 
decisions resulting in disaster [18]. However, the information 
fusion domain is ripe for the application of human-machine 
teaming research as the human and the machine have 
complementary strengths, that when combined, can enhance 
the fusion process.

Reference [19] proposed a four-stage view of human 
information processing that includes information acquisition, 
information analysis, decision and action selection, and action 
implementation to correspond to the equivalent system (or 
machine) stages. In this framework, any of the four stages may 
be automated at a level of 1-10, with 1 being completely 
manual and 10 being completely automated. Higher levels and 
later processing stages generally require increasing degrees of 
automation as it is typically assumed that later stage automaton 
includes at least the level of automation in the earlier stages. 
Reference [20] conducted a meta-analysis of 18 automation 
studies and concluded that there is a critical difference in the 
benefit of automation for tasks supporting information analysis 
verses tasks supporting action selection. Automation 
supporting information analysis enhanced performance, while 
automation supporting action selection had negative 
consequences. However, many studies on automation using the 
model found in [19] have conflicting results. For example, [21]
found that information automation (both acquisition and 
analysis) hurts expertise development whereas decision 
automation accelerates expertise development. Patterson [22]
suggested that many of the conflicting results from these 
studies may be due to the fact that the original levels of 
automation in the model found in [19] focused solely on 
analytical processing and neglected intuitive cognition.

How do people integrate information? One might imagine 
that people consciously search for information and reason 

about how it is put together and what it might mean. They 
might also search through their memories for similar problems 
that they have encountered before to try to make sense of the 
current situation. This process would be deliberate and 
effortful. However, early evidence within the research 
literature on Gestalt psychology points towards a more 
unconscious process, one in which people have trouble 
explaining how or why they assemble cues to perceive the 
whole because it occurs outside of their awareness. A gestalt is 
an integrated coherent structure or form, a whole that is 
different from the sum of its parts. Gestalts emerge 
spontaneously from self-organizational processes in the brain. 
An emergent feature is perceived when parts combine into 
wholes; it is a feature possessed by wholes, but not any 
individual part nor any single group of parts [23, 24]. Early 
psychologists demonstrated that these perceptual processes 
also apply to cognition [e.g., 25].

Following from Gestalt psychology, information is 
combined into a complete idea or solution spontaneously by 
reorganizing the information within the brain. Research shows 
that humans use two different cognitive systems to reason 
about the world [e.g., 26-29]. Dual Process theories account for 
two different systems of thinking, one that is based upon 
unconscious pattern recognition, and the other based upon
more deliberate conscious processing that requires working 
memory resources. Type 1 processes, also known as intuitive 
processes, are those that do not require working memory and 
operate autonomously. They tend to be quick, have high 
capacity, and operate outside of conscious awareness. This 
type of processing, based on past experience, is contextualized 
and operates by subconscious pattern recognition formed from 
statistical regularities encountered in the environment. Type 2 
processing, also known as analytic processing, involves 
cognitive decoupling (the ability to distinguish supposition 
from belief) and hypothetical thinking. Analytic processing
puts a strong load on working memory. These processes are 
typically conscious, slow, capacity-limited, and processed 
serially. As such, analytic processing is correlated with 
cognitive ability [30].

Results from these three different fields of research reveal 
something important about how humans and machines 
integrate information and how the common workspace 
between them affects a human’s ability to detect patterns in 
data. According to the information fusion literature, analysts 
must recognize patterns in the data to reach levels 2 and 3 of 
information fusion, but this specific literature lacks any 
research on how humans actually perform pattern recognition.
Human cognition research contains neurological evidence 
suggesting that pattern analysis is a distinct skill that does not 
require specific conscious processing [e.g., 31]. This research 
also contains prolific experimental evidence that people can 
and do integrate vast amounts of information outside of 
conscious awareness [25, 32, 33]. These results suggest that a 
common workspace between the human and the machine in an 
information fusion system should foster pattern recognition so 
long as it induces the human’s intuitive system. From the 
human-machine teaming research, [21] presumed that his 
discovery that expertise development was hindered by 
automating information acquisition occurred because 
automating the acquisition process hinders a learner’s ability to 
reason about an activity. Other studies produced mixed results 
regarding the effects of automating information acquisition. 



However, the air traffic control task in [21] was a very 
perceptual task and ripe for inducing intuitive cognition. 
Because the intuitive system is not workload dependent, 
increasing automation should not significantly benefit 
performance on an intuition-inducing task. In fact, it is possible 
that for this type of task, automating information acquisition 
could cause people to miss patterns formed by the information 
in the environment that they would have recognized if they 
were acquiring the information on their own. However, for 
tasks that engage the analytic system, decreasing workload by 
automating information acquisition should improve the 
human’s ability to learn patterns because the analytic system 
relies on working memory, which is limited in capacity. The 
combination of results from these three distinct research
communities led to the rationale for the current research.

II. CURRENT RESEARCH

This research will investigate how automating part of the 
information fusion process affects humans’ pattern recognition 
abilities. The purpose of the study is to investigate how the 
amount of automation of information acquisition used to 
support human sensory processes affects the human’s ability to 
detect patterns in data needed to reach higher levels of 
information fusion. Specific objectives are: 1) To determine 
how human-machine teaming facilitates the human’s ability to 
learn patterns, and 2) To determine, based on task-type 
(intuition-inducing vs analytic-inducing), how the common 
workspace between a human and machine should be structured 
to aid the human’s ability to recognize patterns.

A. Hypotheses and Experimental Design

This study will use a 2 (task type: intuitive, analytic) x 3 
(amount of automation: none, half, all), between subjects 
experimental design, with 8 participants in each condition.
Participants will consist of graduate students recruited from a 
local university. The dependent measure will be performance 
on forced-choice test trials, in which success requires one to 
learn patterns during training trials.

Hypothesis 1: For fully manual tasks, humans will 
perform better at pattern recognition using a workspace 
that favors the intuitive system than using a workspace 
that favors the analytic system. 

Hypothesis 2: As the amount of information acquisition 
automation increases for intuitive tasks, the human’s 
pattern recognition performance will decrease.

Hypothesis 3: As the amount of information acquisition 
automation increases for analytic tasks, the human’s 
pattern recognition performance will increase.

B. Method

a) Materials. Intuitive processes are thought to emerge 
through implicit learning, which occurs when people learn 
without intention or, sometimes, awareness. Through implicit 
learning, people encode tacit knowledge based on statistical 
regularities encountered in the environment, enabling intuitive 
decision making and expertise development [34]. One 
methodology used for implicit learning studies is to use a 
finite-state grammar as a way of generating complex yet 
seemingly random patterns [e.g., 35, 36]. Different paths 
through the grammar produce different sequences of objects.

The current study will use a finite-state grammar to generate 
the stimuli patterns.

For this task, people will be asked to use information 
obtained from a text chat window to record the daily route 
traveled by a person of interest. The possible routes of the 
person of interest will be generated using a finite state 
grammar, with each path through the grammar representing 
one route of that person for one day. Information will be 
defined as the route traveled in one day, which corresponds to 
the information acquisition processing stage and to Level 1 
fusion (object identification, with the “object” being the route).
Information Analysis will be defined as the pattern built from 
experiencing multiple routes, which also corresponds to Level 
2 fusion (gaining a better understanding of the situation). Level 
3 Fusion will be measured during test trials. Like the training 
trials, information will be obtained through a chat window. 
Half of the routes will be unexperienced paths taken through 
the same finite-state grammar as used during training, and half 
of the routes will violate the rules of the finite-state grammar,
but will use the same possible stops. The participant’s task will 
be to determine if the person violated his or her normal pattern 
of activity, indicating that he or she is about to perform a 
violent act (projection in the future for impact assessment), also
corresponding to [19]’s decision making processing stage. 

The two independent variables will be task type and 
amount of automation. Task type will be manipulated by the 
workspace to either favor intuitive processing or analytic 
processing. Intuitive processes are more likely to engage with 
perceptual cues, whereas analytic processes operate more on 
symbolic cues [37]. The procedure for the intuition-inducing 
task will involve plotting points and drawing routes of a person 
of interest on a map, which is a very perceptual workspace. For 
the analytic-inducing task, the participant will obtain the 
information from a chat window, look at the same map used in 
the intuition-inducing task, and type the name of the locations 
in order, essentially creating a list of waypoints. The 
workspace is no longer the map, but a document on which to 
type. This task involves words, making it symbolic in nature. 
Additionally, looking at the map to obtain the name of the 
location of the stop before typing it into another workspace 
generates additional workload than that for the intuitive task. 
This type of workspace is more likely to induce the analytic 
system. The amount of automation will be manipulated to 
study how it affects pattern recognition. In the fully manual 
task, the human will obtain coordinates from a chat window 
and record the routes between the points. In the human-
machine teaming condition, the computer will record half of 
the routes and the human will record half of the routes. In the 
fully automated condition, the human will watch the machine 
record the routes between coordinates. 

b) Procedure. Participants will be randomly assigned to 
one of six conditions. After receiving instructions, participants 
will begin the training session. They will not be informed that 
there is a pattern or that there will be a test. The length of the 
training session will depend on the complexity of the grammar 
used (to be determined in pilot tests). After the training session, 
participants will perform the test. The test will resemble the 
training, except after each route the subject will have to answer 
whether the person violated his normal pattern of activity. 
They will not receive feedback on accuracy. The experiment is 
expected to take one hour or less.



III. EXPECTED RESULTS

Recognition accuracy will be measured and compared 
across the groups. A significant interaction between task type 
and amount of automation is anticipated. For tasks that induce 
the human’s intuitive system, increasing automation is 
expected to disrupt the human’s ability to recognize patterns in 
data. However, for tasks that induce the human’s analytic 
system, increasing automation is expected to improve the 
human’s ability to recognize patterns in data.

IV. DISCUSSION

The principle results of this planned research can feed into 
the design of common workspaces to support human-machine 
teaming in future information fusion systems. Fig. 1 depicts 
how a human-machine team could operate within an 
information fusion system. Data is collected from the 
environment, potentially from a variety of different sources, to 
include sensors, internet, other computers, written reports, etc. 
The data is then allocated to either a human or a machine, 
depending on what the machine can or cannot handle or what 
processing needs can be performed upon the data. The machine 
performs low-level fusion while the human employs reasoning 
and uses information stored in long-term memory to perform 
high-level fusion. There is a common workspace where both 
the human and machine can deposit and use information after 
processing, with the higher-level goal of accurately reaching 
Levels 2 and 3 Fusion. In human teams, a common view of the 
workspace enhances task performance by providing feedback 
about the state of the joint task and facilitating communication 
[38], both of which foster common understanding between the 
teammates. The common workspace can help with creating a 
shared perception and common understanding of the 
information between a human and machine.

If our hypotheses are supported, implications abound for 
how to design information fusion systems. If possible, humans’ 
workspaces should be designed to aid their ability to recognize 
patterns in data, meaning the workspaces should induce their 
intuitive systems. If automating information acquisition hurts 

this pattern-recognition ability, then information fusion 
systems should focus more on automating data analysis or 
decision selection rather than information acquisition. For 
cases in which this is not possible, computers should allow 
humans to participate in information acquisition by retrieving 
and highlighting information to humans, allowing humans to 
place the information in the workspace. If it is impossible to 
design the workspace to trigger humans’ intuitive systems, the 
more information computers can add to common workspaces, 
the more humans’ working memory resources will be freed, 
facilitating the use of their analytic systems to perform 
conscious pattern recognition.

V. CONCLUSION

In a human-machine team, the human’s ability to use 
intuition instead of rational thought, which a computer cannot 
do, brings a team strength that should not be forgotten in the 
drive to automate more and more tasks. Understanding how 
automation affects the human’s intuitive processes is a critical 
step in the design of effective information fusion systems. 
Based on our review of previous research and what we know 
about human cognition and automation, if our results support 
our hypotheses, we will demonstrate that automating 
information acquisition for tasks that drive the intuitive system 
will be deleterious for humans’ ability to recognize patterns in 
data, and ultimately harm high-level information fusion. 
However, for tasks that drive the human’s analytic system, 
automating information acquisition will greatly enhance the 
human’s ability to recognize patterns in data. These results will 
be significant when designing the common workspace between 
humans and machines in information fusion systems.

VI. DISCLAIMER

The views expressed in this paper are those of the authors 
and do not reflect the official policy or position of the United 
States Air Force, the Department of Defense, or the U.S. 
Government.

Fig 1. Human-Machine Teaming for an Information Fusion System
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