
Human Interactive Machine Learning for Trust in 

Teams of  Autonomous Robots

Robert S. Gutzwiller & John Reeder 

Space and Naval Warfare Systems Center Pacific 

San Diego, USA 

gutzwill; jreeder@spawar.navy.mil 

Abstract— Unmanned systems are increasing in number, 

while their manning requirements remain the same. To decrease 

manpower demands, machine learning techniques and autonomy 

are gaining traction and visibility. One barrier is human 

perception and understanding of autonomy. Machine learning 

techniques can result in “black box” algorithms that may yield 

high fitness, but poor comprehension by operators. However, 

Interactive Machine Learning (IML), a method to incorporate 

human input over the course of algorithm development by using 

neuro-evolutionary machine-learning techniques, may offer a 

solution. IML is evaluated here for its impact on developing 

autonomous team behaviors in an area search task. Initial findings 

show that IML-generated search plans were chosen over plans 

generated using a non-interactive ML technique, even though the 

participants trusted them slightly less. Further, participants 

discriminated each of the two types of plans from each other with 

a high degree of accuracy, suggesting the IML approach imparts 

behavioral characteristics into algorithms, making them more 

recognizable. Together the results lay the foundation for exploring 

how to team humans successfully with ML behavior. 
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I. HUMAN AUTOMATION INTERACTION 

Methods of collaborative human automation interactions are 
becoming more crucial in many domains, and especially in 
human-automation and human-robotic command and control 
[1]–[3]. At the same time, the methods of invoking control are 
advancing rapidly, and new solutions and methods are being 
found using machine learning techniques. Unlike standard 
programming, machine learning results in behaviors that are not 
always explainable; in fact this problem is robust enough that a 
new DARPA program, XAI, is being stood up to make these 
brilliant techniques easier to understand. 

The importance of understanding what algorithms are 
capable of doing is obvious when you are co-located with a 
potentially dangerous device. Thus for human-robot interaction, 
physical proximity creates a demand for  high trust between the 
humans and the machines [4]–[6]. Less intuitively, trust in 
unmanned systems and autonomy is still needed when these 
systems are operated from a distance through command 
abstractions, such as supervisory control. Moreover, supervisory 
control is precisely where machine-learning algorithms should 
be leveraged in helping to determine the best mixtures of tasks, 
vehicles, and operator performance for mission success.  

Military command and control (C2) is traditionally a human-
dominated area. Agents within a C2 framework (humans) are 
routinely given their autonomy via the commander. Such 
autonomy is in relation to achieving some underlying mission, 
and one can call this autonomy the provision of  “commander’s 
intent”, which conveys high-level goals. Through the 
communication of intent, the commander and the supervised 
agents (whether human or computer) both develop expectancies. 
The commander expects to (a) not be asked to define individual 
actions toward achieving his goals, but also (b) that any actions 
taken can still be reasonably assessed within the mission context 
as adhering to intention or not, so that the commander can 
maintain mission alignment [7]. Opaque agents and behavior, 
such as those created by machine learning, then, by definition 
impede C2 by disrupting the ability to assess alignment. If the 
commander cannot develop expectancies, it is unlikely that trust 
will form with machine learning algorithms, which otherwise 
may be excellent performers. How can we bridge that gap? 
Interactive Machine Learning may provide one such method, to 
be described later. But first, we describe some of the major 
challenges facing human-automation interaction. 

II. AUTOMATION FAILURES, TRUST AND RELIANCE 

If implemented, machine learning will be difficult to 
supervise [8], and calibrated trust will be nearly impossible to 
achieve as it relies critically on understanding the intentions and 
behaviors of the system (transparency – see [9]). Trust in 
automation is a complex research area, well summarized across 
several reviews [10], [11]. Lee and See [10] outlined three 
general bases for development of trust for automation in 
humans: performance of the automation (does it fail 
unexpectedly), process (whether the automation is 
understandable and fits well into the users workflow), and 
purpose (the automation functions as intended). Though 
purpose, process and performance can form the basis for trust, 
trust is still different from reliance (the choice to use the agent 
or automation.) For example, one can choose not to use a robot 
to perform a task, even though it could be very trustworthy; or 
vice versa, distrust a system but have no choice but to rely on it 
under certain circumstances, such as cognitive overload [12].  

 Many different failures in human-automation 
interaction can be traced back to faulty trust calibration (how 
well users align their trust with the actual capability of an 
automated system). Calibration in this sense is one of several 
ideal states of cooperation then. Calibrated users should then 
have a more accurately informed decision process, avoid misuse 
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(because one will not over-rely on, nor fail to monitor the 
system), and so calibration promotes appropriate use [13]. 

Often humans must rely on their perception of an automated 

system or robots ability and behavior. The more obvious these 

abilities and behavioral intentions are, the more obvious failure 

states become. It is not that a system has to be perfect in order to 

be trusted, but it must be somewhat predictable; trust is more 

calibrated if one can “trust” automation to make certain kinds of 

mistakes (e.g. [14]) but not others.  

With an opaque system, the operator cannot compensate for 

these faults (risking mission performance), in part because the 

expectancies surrounding failure conditions are not obvious. 

Calibrated and high-resolution trust is less likely because 

automation mistakes are not observable. Many have suggested 

increasing automation transparency is needed to improve 

teaming here; but the tradeoff with transparency in this case is 

that opaque systems may provide more optimal solutions. 

Neuroevolutionary computation [15]–[17] is one such method; 

the serious downside to neuroevolutionary computation is that it 

can result in “black boxes” from the human operator’s point of 

view, which can make its application unsuitable for the real 

world. When applied to robotic plans, it may have the user 

asking questions like “What is this robot doing? What is it going 

to do? Why did it do that?”  

The focus on increasing the optimality of these systems, 

largely performed in the domains of computer science and 

mathematics, generally ignores the need for user interaction. We 

attempt to mitigate the notable downside of generating black box 

solutions with new methods, as explained below, seeking to 

make their behavior more tolerable to the human supervisors and 

commanders who might oversee their operation.  

III. INTERACTIVE MACHINE LEARNING 

A new method to improve the amount of comprehension 
between the user and an evolved agent may be incorporating the 
user into the evolution of the system. Such inclusion may be 
achieved by allowing humans to define goal states, and offer 
guidance through user input along an evolutionary path. Past 
efforts have used human input in evolutionary mechanisms with 
positive results. However, the evolutionary goals have been only 
been idiosyncratic, such as beauty [18], [19]. We seek to explore 
similar techniques in the development of autonomous vehicle 
team behaviors, which have much more objective goals such as 
movement to locations and coverage of definable areas, in order 
to provide more understandable and predictable behaviors. 
These are key aspects of developing and maintaining situation 
awareness during operation [20], [21], and build on the growing 
movement to convey “transparent” information from 
autonomous systems [22]. Our central hypothesis is that IML 
will develop behaviors (plans in this experiment) that adhere 
more closely to user goals and expectations. Plans should be 
more identifiable and trustworthy as a result. We focused on 
three questions: (1) does the incorporation of humans in deriving 
ML algorithms, through IML, lead to more human trust in the 
plans that are generated? (2) Do participants, who helped 
generate plans, recognize, and be able to differentiate between 
IML and black box plans (which used neuroevolution, but no 
human involvement). Finally, (3) does the amount of 

neuroevolution that occurs, represented as steps, affect either 
trust or plan recognition? 

IV. EXPERIMENT  

Sixty participants were recruited from the University of 
Central Florida, and received payment ($15/hr) as 
compensation, in compliance with all IRB statutes. Participants 
completed a trust pre-experiment survey [23]; then performed in 
three phases: training, comparison, and labeling.  

A. Training Phase 

Participants were taught about the goal of three robots trying 
to search two areas effectively, and that the human role was to 
help train automated behaviors to maximize the amount of the 
area searched. A set of robot search agents in a virtual 
environment were shown exploring a space. Agents were 
autonomous and left signal decay trails in their wake, allowing 
participants to view how much of the targeted area had been 
searched. Participants responded by choosing from these options 
a good behavior to evolve further. Participants were counter-
balanced across the frequency of user input in IML (a decision 
prior to every 10 or every 25 steps of evolution). With fewer 
steps of evolution, the human has more “say” in the outcome. 
After making a selection, the algorithm evolved, and then new 
“plans” were presented. Participants responded through 
approximately 410 steps of evolution due to time constraints 
(about 40 points of interaction for 10-step, and only about 16 
points of interaction for 25-step). 

B. Comparison Phase 

After training, participants were shown two teams in action. 
One of the two teams was IML and the other was black box, with 
the location of each team on the screen randomized (left or 
right). Plan pairs were chosen on the backend to equate fitness 
between them. When plans stopped participants selected the 
plan they believed would best cover the designated areas, and 
then made a response, 1-100 on a sliding trust scale indicating 1 
for no trust and 100 for complete trust in the chosen plan. 

C. Labeling Phase 

Following comparison, participants were shown a single 
team in action, and asked whether the team was IML, or black 
box. The interactive evolution teams were drawn from the 
specific individual’s set of IML plans. Approximately 50% of 
each type of plan was shown randomly over 80 trials. 
Participants were given immediate feedback on their answers. 
At the end of the phase, participants were asked for their 
decision criteria for determining whether the teams in action had 
human IML, or were the evolved plans. Responses to the last 
question ended the experiment. Following, participants were 
debriefed and thanked for their participation.  

V. INITIAL RESULTS  

A. Comparison Results 

Overall, participants chose the IML plans more often (M= 

.66, SD= .16), and their trust in these choices overall was 

moderate to high (M= 61). At least on this initial level we have 



found users believed that IML-generated behaviors were better 

than black box, when given the choice between them. 

Considering no fitness difference between them, users must be 

basing their choice on other characteristic imparted by the 

participants in the IML training phase. There was no interaction 

between plan choice and the amount of user involvement (10 

versus 25 steps). However participants completing the 25 step 

condition first choose IML plans more often (71.5% versus 60% 

of the time; F(1,44)= 5.93, p= .02, np2= .12).  

After eliminating participants with missing data, trust was 

rated higher for plans with less (25-step) human involvement 

(F(1,34)= 4.9, p= .04, np2= .13). Participants trusted black box 

plans (M= 63) more than IML (M= 60) plans (F(1,34)= 6.5, p= 

.02, np2= .16). Such a difference may not be operationally 

significant, as both effects were small and with no interaction. 

Yet the data are interesting because they conflict with the choice 

data above - IML plans were chosen more, but trusted less. 

B. Labeling Results 

Participants labeled plans accurately, regardless of 

counterbalance condition or whether the behaviors were pulled 

from 10 or 25 steps training phases (M= .77). When wrong, 

participants were equally likely to mistake a behavior as IML as 

black-box, a check on whether our participants were biased in 

responding to all trials as one or the other type. To be accurate, 

participants had to be detecting or recognizing some difference 

between the plan types. 

VI. DISCUSSION 

Involving humans in generating neuroevolutionary 

behaviors for teams of agents (IML) resulted in behaviors that 

participants choose more often, and were able to recognized. 

The importance of this first step is key, as it suggests that IML 

imparts traits to ML behaviors, which could be tuned to increase 

the expectancy and alignment of teams of machines. As 

mentioned in the introduction, this is a key limitation to 

employment. Despite their preferences, participants trusted IML 

plans slightly less than black-box plans, despite generally good 

trust of plans (M= 61).  

 From a methodological standpoint, IML appears to have 

been effective even with small amounts of user involvement. 

Users may be imparting traits, correcting early, common “odd” 

behaviors of the algorithms, or possibly, it was their active 

involvement in the behavior development that made it familiar 

to them. No matter the explanation our work shows a hopeful 

avenue for exploration toward making otherwise opaque 

algorithms useful, and creating expectancies or familiarity for 

the user. 

Although machine learning offers required advantages, it 

can be opaque to users and reduce their awareness, confounding 

C2. We have shown there is promise in interactive machine 

learning techniques that increase user selection of team 

behaviors compared to pure evolution alone. 
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