
ICBC’19, May 17, 2019

Formal Design,

Implementation and Verification

of Blockchain Languages

Grigore Rosu

University of Illinois at Urbana-Champaign

President & CEO, Runtime Verification Inc.

Blockchain Technology
Unprecedented Security Challenges

2

Think “execute some
given, publicly visible

code, with shared state”!

Transaction is broadcast, then
“validated” by re-executing it on

many “nodes”, using agreed upon
languages (virtual machines)

Validated transactions
are then deployed by

all nodes locally…

…in blocks, appending
each block, irreversibly, to

the public “ledger” or
“history” or “blockchain”.

Some transactions add new
code to the blockchain, called

“smart contracts”, which can be
executed by other transactions.

In the end, all code is public,
can be invoked by anybody, and

can irreversibly change the
history (e.g., steal your money).

Hackers have huge
incentives to exploit any

bugs in smart contracts or
underlying infrastructure.

Smart Contract Snippet (ERC20)
(one of the ~40,000 Ethereum ERC20s)

Written in Solidity:

3

ERC20 does not
state that…

There should be
no overflow when
self-transfer…

…

Attacks Happened. Many.

4
That’s larger than $1070!

What Can We Do About This?

• More specifically, what can we do about the
execution environment, to increase security?

– Unacceptable to build this complex and disruptive
technology with poorly designed VMs and languages!

• Ideal scenario feasible, stop compromising!

– Everything must be rigorously designed, using formal
methods. Implementations must be provably correct!

• Nodes: provably correct VMs or interpreters

• Smart contracts: use well-designed programming languages,
with provably correct compilers or interpreters

• Verification: Smart contracts provably correct wrt their specs
5

Ideal Language Framework Vision

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

6

…

Current State-of-the-Art
- Sharp Contrast to Ideal Vision -

7

C

Java

JavaScript

Solidity

Ethereum VM

…

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

…

Separate tools, by
separate teams, little

to no code shared

Current State-of-the-Art
- Sharp Contrast to Ideal Vision -

8

C

Java

JavaScript

Solidity

Ethereum VM

…

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

…

The story of the
PL/FM community.
Maintenance hell

(L * T systems).
Uneconomical.
Wasted talent!

L T

How It Should Be

9

C

Java

JavaScript

Solidity

Ethereum VM

…

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

…

Ideal Language Framework

Our Attempt: the K Framework
http://kframework.org

• We tried various semantic styles, for >15y and
>100 top-tier conference and journal papers:
– Small-/big-step SOS; Evaluation contexts; Abstract

machines (CC, CK, CEK, SECD, …); Chemical abstract
machine; Axiomatic; Continuations; Denotational;…

• But each of the above had limitations
– Especially related to modularity, notation, verification

• K framework initially engineered: keep advantages
and avoid limitations of various semantic styles
– Then theory came

10

http://kframework.org/

Complete K Definition of KernelC

11

Complete K Definition of KernelC

Syntax declared using annotated BNF

…

12

Complete K Definition of KernelC

Configuration given as a nested cell structure.
Leaves can be sets, multisets, lists, maps, or syntax

13

Complete K Definition of KernelC

Semantic rules given contextually

rule

<k> X = V => V …</k>

<env>… X |-> (_ => V) …</env>

14

K Scales

Several large languages were recently defined in K:

• JavaScript ES5: by Park etal [PLDI’15]
– Passes existing conformance test suite (2872 programs)

– Found (confirmed) bugs in Chrome, IE, Firefox, Safari

• Java 1.4: by Bogdanas etal [POPL’15]

• x86: by Dasgupta etal [PLDI’19]

• C11: Ellison etal [POPL’12, PLDI’15]
– 192 different types of undefined behavior

– 10,000+ program tests (gcc torture tests, obfuscated C, …)

– Commercialized by startup (Runtime Verification, Inc.)

+ EVM [CSF’18], Solidity, IELE, Plutus, Vyper, … 15

Ideal Language Framework Vision [K]

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

16

…

1. Translate K lang def to OCAML
2. Compile OCAML code natively

Code (6-int-overflow.c)

Conventional
compilers do not
detect problem

RV-Match’s kcc tool precisely
detects and reports error, and
points to ISO C11 standard

RV-Match: Commercial tool
• Instance of K -> OCAML with ISO C11 language
• an automatic debugger for subtle bugs other

tools can't find, with no false positives
• seamless integration with unit tests, build

infrastructure, and continuous integration
• a platform for analyzing programs, boosting

standards compliance and assurance

OCAML backend: K -> OCAML

https://runtimeverification.com/match/1.0-SNAPSHOT/docs/benchmark/#running-rv-match-on-the-toyota-itc-benchmark

From RV-Match to Blockchain

• RV-Match currently commercialized within

• The same technology, K, used for defining
blockchain languages: EVM, eWASM, IELE, …

18

Ideal Language Framework Vision [K]

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

19

…

State-of-the-Art

• Redefine the language using a different semantic
approach (Hoare/separation/dynamic logic)

• Language specific, non-executable, error-prone

20

What We Want

• Use directly the trusted

executable semantics!

• Language-independent proof system

– Takes operational semantics as axioms

– Derives reachability properties

– Sound and relatively complete for all languages!

Formal Language Definition
(Syntax and Semantics)

Deductive
program
verifier

Symbolic
execution

21

[…, LICS’13, RTA’15, OOPSLA’16, FSCD’16, LMCS’17, …]

Matching Logic

22

Structure

Constraints

Binders

Patterns
(of each sort s)

Matching -Logic

• Adding support for recursion / induction

23

[LICS’19]

Expressiveness

• Important logics for program reasoning can be
framed as matching logic theories / notations
– First-order logic

• Equality, membership, definedness, partial functions

– Lambda / mu calculi (least/largest fixed points)

– Modal logics

– Hoare logics

– Dynamic logics

– LTL, CTL, CTL*

– Separation logic

– Reachability logic

– …

Reachability Logic (Semantics of K)
[LICS’13, RTA’14, RTA’15,OOPLSA’16]

• “Rewrite” rules over matching logic patterns:

• Patterns generalize terms, so reachability rules
capture rewriting, that is, operational semantics

• Reachability rules capture Hoare triples

• Sound & relative complete proof system
– Now proved as matching logic theorems

25

Can be expressed in matching logic:
→ (’)  is “weak eventually”



[FM’12]

K = (Best Effort) Implementation of RL

• Reachability logic implemented in K, generically

26

EVM
IELE
Plutus
Solidity
…

• Evaluated it with the existing
semantics of C, Java,
JavaScript, EVM, and several
tricky programs

• Morale:
– Performance is comparable

with language-specific provers!

Sum 1+2+…+n in IMP: Main

27

K for the Blockchain

28

K Framework Vision

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

29

…

KEVM: Semantics of the Ethereum
Virtual Machine (EVM) in K

Complete semantics of EVM in K
– https://github.com/kframework/evm-semantics

– Passes 60,000+ tests of C++ reference implementation

– 8x (only!) slower than the C++ implementation

– Adoption by the Ethereum Foundation
30

[CSL’18]

https://github.com/kframework/evm-semantics

1) Formal documentation: http://jellopaper.org

31

What Can We Do with KEVM?

http://jellopaper.org/

What Can We Do with KEVM?

2) Generate and deploy correct-by-construction
EVM client! IOHK has just done that, in
collaboration with RV, as a Cardano testnet:

32

What Can We Do with KEVM?

3) Formally verify Ethereum smart contracts! RV
is doing that, commercially. RV also won first
Ethereum Security grant to verify Casper.

33

[FSE’18]

Formalizing ERC20, ERC777, … in K

• K is very expressive: can define not only languages,
but also token specifications and protocols

• To formally verify smart contracts, we also
formalized token specifications, multisigs, etc.:
– ERC20, ERC777, many others

• All our specs are language-independent!
– i.e., not specific to Solidity, not even to EVM

• We had the first verified ERC20 contracts!
– Written both in Solidity and in Vyper

• Others use or integrate our framework and specs:
– Consensys, DappHub (KLab), ETHWorks (Waffle), Gnosis

34

https://runtimeverification.com/blog/erc20-k-formal-executable-specification-of-erc20/
https://runtimeverification.com/blog/erc777-k-formal-executable-specification-of-erc777/
https://github.com/runtimeverification/verified-smart-contracts
https://github.com/dapphub/klab
https://github.com/EthWorks/Waffle/releases/tag/2.0.10

Smart Contract Verification Workflow

ERC20 Informal

Business Logic
1

rule

transfer(T, V) => true

caller: F

account:

id: F

balance: BF => BF - V

account:

id: T

balance: BT => BT + V

log: . => Transfer(F,T,V)

requires

0 <= V /\

V <= BF /\

BT + V <= MAXVALUE

ERC20-K

formal

executable
high-level spec

2

[transfer]

callData: #abiCallData("transfer", #address(TO_ID),

#uint256(VALUE))

gas: {GASCAP} => _

refund: _ => _

requires:

andBool 0 <=Int TO_ID andBool TO_ID <Int
(2 ^Int 160)

andBool 0 <=Int VALUE andBool VALUE
<Int (2 ^Int 256)

andBool 0 <=Int BAL_FROM andBool

BAL_FROM <Int (2 ^Int 256)

andBool 0 <=Int BAL_TO andBool BAL_TO

<Int (2 ^Int 256)

[transfer-success]

k: #execute => (RETURN RET_ADDR:Int 32 ~> _)

localMem: .Map => (.Map[RET_ADDR :=

#asByteStackInWidth(1, 32)] _:Map)

log: _:List (.List =>

ListItem(#abiEventLog(ACCT_ID, "Transfer",
#indexed(#address(CALLER_ID

……….

………

…….

ERC20-EVM

formal executable

low-level spec

that contains all

EVM details

3

Designing New (and Better)
Blockchain Languages Using K

36

EVM Not Human Readable
(among other nuisences)

37

define public @sum(%n) {
%result = 0

condition:
%cond = cmp le %n, 0
br %cond, after_loop
%result = add %result, %n
%n = sub %n, 1
br condition

after_loop:
ret %result

}

If it must be
low-level, then
I prefer this:

• Incorporates learnings from defining KEVM and
from using it to verify smart contracts

• Register-based machine, like LLVM; unbounded*

• IELE was designed and implemented using formal
methods and semantics from scratch!

• Until IELE, only existing or toy languages have
been given formal semantics in K
– Not as exciting as designing new languages

– We should use semantics as an intrinsic, active
language design principle, not post-mortem

38

A New Virtual Machine (and
Language) for the Blockchain

K Semantics of Other
Blockchain Languages

• WASM (web assembly) – in progress, in
collaboration with the Ethereum Foundation

• Solidity – in progress, collaboration between RV
and Sun Jun’s group in Singapore

• Plutus (functional) – in progress, by RV following
Phil Wadler’s (@IOHK) design of the language

• Vyper – in progress, by RV in collaboration with
the Ethereum Foundation

• …
39

K Modelling and Verification of
Blockchain Protocols

• K and rewriting can also be used to formally
specify and verify consensus protocols, random
number generators, etc.; same tool eco-system

• Done or ongoing:

– Casper FFG (Ethereum Foundation)

– RANDAO (Ethereum Foundation)

– Casper CBC (Coordination Technology)

– Serenity / ETH 2.0 (Ethereum Foundation)

• Several others planned or in discussions
40

Ongoing K Infrastructure Projects

41

1. Fast LLVM (and IELE) Backend for K

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

42

…

Fast LLVM (and IELE) Backend for K

• Current OCAML backend of K:

• Fast enough to power RV-Match product and the KEVM
and IELE VMs in testnets

• But still one or two orders of magnitude slower than hand-
crafted interpreters

• LLVM backend for K under development:

• Take advantage of LLVM’s optimizations / pipeline

• Expected to compete with hand-written interpreters!

• Will make language designers ask themselves the question
“Why would I implement an interpreter/VM by hand, when I can
generate one automatically, correct-by-construction?”

43

2. Semantics-Based Compilation

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

44

…

Semantics-Based Compilation (SBC)

Goals
– Execution of P in L equivalent to executing LP in a start configuration
– LP should be “as simple as possible”, only capturing exactly the

dynamics of L necessary to execute program P

Program P in
Language L

Semantics-Based
Compilation

𝕂 Semantics of
Language L

𝕂 Semantics of
Language LP

¬ b ≤ 27

n := n / 2

2 ≤ n ∧ n is even2 ≤ n ∧ ¬ n is even

¬ 2 ≤ n

n := 3n + 1

b ≤ 27

n := b

b := b + 1

b := 1

n := 1

x := 0

start

outer

inner

end

// start

int b , n , x ;

b = 1 ; n = 1 ; x = 0 ;

// outer

while (b <= 27) {

n = b ;

// inner

while (2 <= n) {

if (n <= ((n / 2) * 2))

{

n = n / 2 ;

} else {

n = (3 * n) + 1 ;

}

x = x + 1 ;

}

b = b + 1 ;

}

// end

compiles to

Semantics-Based Compilation (SBC)
Experiments with Early Prototype

Program Original (s) Compiled (s) Speedup

sum.imp 70.6 7.3 9.7

collatz.imp 34.5 2.7 12.8

collatz-all.imp 77.4 5.7 13.6

krazy-loop.imp 67.6 3.3 20.5

3. Proof Object Generation

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

47

…

Proof Object Generation

• Each of the K tools is a best-effort implementation of
proof search in Matching µ-Logic:

• New Haskell backend of K will explicitly generate proof
objects for verification tasks

48

16 proof rules only!
Simple proof checker (200 LOC)!

In contrast, Coq has about 45
proof rules, and its proof checker

has 8000+ lines of OCAML

Proof Object Generation

• No need to trust the (complex) K implementation,
nor any company (including Runtime Verification)
– It is known that program verifiers / tools can have bugs in

spite of best efforts, bug finders and company prestige

• Proof objects act as 3rd-party checkable correctness
certificates on the blockchain, in a proof-carrying
code style (proofs can be stored offchain, or snarked)

• In combination with domain-specific languages for
requirements specifications, this will offer the
highest level of software assurance known to man

49

Ultimate Goal

a Universal Blockchain Technology

50

K – A Universal Blockchain Language

• We want to be able to write (provably correct)
smart contracts in any programming language.

• All you need is a K-powered blockchain!

51

K language semantics will be stored
on blockchain. Fast LLVM backend

of K as execution engine / VM.

K – A Universal Blockchain Language

• K-powered blockchain enables (provably correct)
smart contracts in any programming language!

52

1. Write contract P in any language, say L (unique address)
2. SBC[L] your P into LP ; verify P (or LP) with K prover

K-Powered Blockchains

• K may be used one day to generate correct-by-
construction (CBC) blockchains; not a dream, no!

53

Each node is a K VM
client (LLVM backend)

Consensus protocol formalized
and verified in K, implementation
generated from specification, CBC

K – A Universal Blockchain Language

• When all the projected K tools will be completed, K
will provide everything we need to

– Design new smart contract languages, add them in the
blockchain and start using them right away, with auto-
generated correct(!) implementations and tools

– Same for virtual machines(!) and consensus protocols(!)

• Everything will be either a trusted formal
specification or generated automatically from one

• Proof objects will serve as correctness certificates

• Perfect. No compromise!
54

Moreover…

a Ultimate Smart Contract Language

55

K as a Smart Contract Language

• Smart contracts implement transactions
– Often using poorly designed and thus insecure

languages, compilers and interpreters / VMs

K also implements transactions, directly!
– Indeed, each K rule instance is a transaction

• Each smart contract (Solidity, EVM, …) requires
a formal specification in order to be verified

K formal specifications are already executable!
– And indeed, they are validated by heavy testing

56

Hm, then why not write my smart contracts
directly and only as K executable specifications?

Example: ERC20 Token in Solidity
- Snippet -

57

Bytecode:

58

Opcodes:

• Unreadable
• Slow: ~25ms to execute (ganache)
• Untrusted compiler, so it needs to

be formally verified to be trusted
• We formally verify it using KEVM

against the following K specification:

Example: ERC20 Compiled to EVM
- Snippet -

K Specification of ERC20
- Snippet, Sugared -

59

rule transfer(To, V) => true

caller: From

account: id: From balance: BalanceFrom => BalanceFrom - V

account: id: To balance: BalanceTo => BalanceTo + V

log: . => Transfer(From, To, V)

requires 0 <= V <= BalanceFrom /\ BalanceTo + V <= MAXVALUE

• Formal, yet understandable by non-experts
• Executable, thus testable (for increased confidence)
• Fast: ~2ms to execute with LLVM backend of K
• No compiler required
• Correct-by-construction, no code to formally verify
• Use K as programming language for smart contracts!

Conclusion: It Can Be Done!

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

60

…

