
© UZH 2019

IEEE ICBC 2019 Tutorial, Seoul, Korea, May 14, 2019

Blockchain and Smart Contracts –
From Theory to Practice

Bruno Rodrigues1, Eder Scheid1, Roman Blum2,
Thomas Bocek2, Burkhard Stiller1

1Communication Systems Group CSG, University of Zürich UZH, Switzerland
2Hochschule für Technik Rapperswil HSR, Switzerland

[rodrigues¦scheid¦stiller]@ifi.uzh.ch
[roman.blum¦thomas.bocek]@hsr.ch

© UZH 2019

Schedule

 Part I – Blockchain Motivation
– Timeline and Basics
– Consensus Mechanisms
– Management Aspects

 Part II – Smart Contracts
– Smart Contract
– Best Practices
– Security

 Part III – Discussion & Considerations
– Challenges and Risks
– Considerations

2

© UZH 2019

Part I – Blockchain Motivation

© UZH 2019

Blockchain 1.0

 Digital Currency
– Decentralized payment system
– Bitcoin as the father of digital currencies

• Still, not much awareness of (other) Blockchain capabilities
– Proof-of-Work (PoW)

2008

Bitcoin (BTC)
Whitepaper

Jan. 2009
BTC Genesis Block

May 2010Oct. 2009

‘‘BTC Network’’ goes live.
FX exchange for BTCs

Feb 2011
1 BTC = 1 USD

Nov. 2010 2011-2012 Jun 2012
Ripple is launched focusing
Banking systems integration

Sep 2012

Bitcoin Foundation

Mar 2013

Non-existent

Public Perception

Initial stage

BTC Market Cap
reaches 1M USD

BTC Market Cap
reaches 1B USD

Central stage

Digital wallets gain
popularity

Bitcoin forks (Litecoin,
Dodgecoin, etc)

«Experimental» stage Discovery of
cryptocurrencies

Two slices of Pizza for
10’000 BTC

4

https://bitcointalk.org/index.php?topic=137.msg1195

© UZH 2019

Blockchain 2.0

Dec 2013 Jan 2014 Jul 2014Feb 2014

 Smart Contracts
– Ethereum unlocks the blockchain potential beyond

cryptocurrencies
– Blockchain is able to run computer programs in a transparent

and verifiable manner

2015 2015
Ethereum goes
live (Frontier) in

July.
Hyperledger is

released in
December.

Mar 2016 Jun 2016 Sep 2016

Public Perception

Ethereum is
announced
by Vitalik B.

Growth of Blockchain
crypto start-ups

«Blockchain can be used
beyond cryptocurrencies»

Continuous increase on the number of
cryptocurrencies

«Blockchain is definitely positive!»

Ethereum project is
launched. Investors
start to recognize

Ethereum’s potential

Investors joins Digital
Asset Holdings, which

represents Wall
Street’s embrace of

Blockchain. NASDAQ
also commits to

Blockchain

Attacks on
exchanges

makes MT.GOX
to collapse

DAO
(Decentralized
Autonomous

Organizatio) is
hacked, losses

estimated in
50M USD.

Workshop
Blockchain on

Healthcare

Awareness for vulnerabilities in
Smart Contracts

Ethereum goes
in production
(Homestead).

«Avoiding the pointless BC project»

Blockchain
Interoperability

V. Buterin

5

https://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/

© UZH 2019

Blockchain 3.0

 Decentralized Applications (DApps)
– Production stage:

• Large number of applications
– Scalability/Performance issues:

• Need for performance  new consensus protocols
• Need for storage  off-chain storage tools

2016 2017
Blockchain

in the
Supply-
chain

2017
Partnership

IBM &
Maersk
Supply-
chain

2017
Estonia uses
Blockchain

for
Governmen
tal Services

2017
ETH Market
Cap reaches

5B USD

2017
1 BTC =

17’900 USD

2017
Blockchain

Identity

2015~2017
Blockchain

IoT

Growing as of today

Public Perception

Switzerland
accepts tax
payments in

BTC! 

2018

«Let’s decentralize
the world!»

BTC breaks
1’000 USD

BTC Bubble

Excessive number of
applications

6

© UZH 2019

Blockchain 4.0

 Ecosystem and Industry Integration
– Making blockchain effective in industry
– Decentralized and disconnected blockchain networks

• Vendor-specific blockchain technology, interoperable chains
– Need for standardization

As of today

7

© UZH 2019

Blockchain Eras and Evolution

 4 different BC eras are running in parallel today

– 1.0 – December 08/January 09: Bitcoins
• More than 2100 cryptocurrencies available today

– 2.0 – 2012-14: Ethereum, Smart Contracts, Solidity, …
– 3.0 – April 2012: Decentralized Apps (dApps) – “Satoshi Dice”

• Running on peer-to-peer network, all data transparent and tamper-proof
– 4.0 – App. 2015: BC ecosystems and industrial integration

• Countless Blockchain projects in many fields
– FinTech, supply-chain, governmental, identity, …

• Digital
Currency

• Blockchain
• Proof-of-Work

1.0
• Smart
Contracts

• Virtual
Machine

• PoS, DPoS,
PBFT, PoA,
PoT, PoB

2.0
• Decentralized
Applications

• Beyond
FinTech

• Friendly Web
Interfaces

3.0
• Industry
Integration

• Cross-chain
interoperability

4.0

https://hackernoon.com/dapp-and-things-you-need-to-know-4f50853a4cb7

8

© UZH 2019

Driving Questions

 How and under which conditions to use blockchain?
– Creator (e.g., researcher) or investor point-of-view

 Is there a right or wrong? A roadmap
for blockchain usage, possibly.
– There is no simple answer … Developer/

Creator
Investor

"What are application
requirements?"

"Which different types of
blockchain one can offer?"

Performance

Security

Scalability

9

© UZH 2019

Blockchain (BC) Basics

© UZH 2019

Definition

 A Blockchain (BC) or Distributed Ledger (DL) is a
decentralized digital ledger that transparently and
permanently record blocks of transactions across
computers based on a consensus algorithm without
modifying the subsequent blocks.

The genesis or the first
block define the settings of
the blockchain

A blockchain is similar to a
linked list except that Blocks
are added according to a
consensus protocol

11

© UZH 2019

Permissions and Transparency

PrivatePrivate read

Permissioned

Permissionless

Public read

Please, use a
traditional database!

Supply-chain

E-government
Identity

Cryptocurrencies

12

© UZH 2019

Block

 A block is a structure to store data (transactions)
– Header: information to identify the block.
– Data: set of stored transactions

The block hash is the identifier of all
transactions in the block AND the block
header

13

© UZH 2019

 In practice, the Merkle Tree guarantees immutability

Integrity, Merkle Tree

Imagine if one wants to remove/change a
transaction

The Merkle Root
will be different
resulting in a
different Block
Hash

Then, a parallel (forked)
chain is created

14

© UZH 2019

Transactions

Alice Bob

A transaction is not stored in
the blockchain straight away

Transaction pool (or mempool)

 How are transactions stored in a block?
– Transaction pool or mempool

• Temporary storage structure (RAM) available on each full node
(Ethereum)

Each full node is connected to
this transaction pool, especially

minersEve Dave
Miners

Miner’s work is to gather
transactions from the
transaction pool in to a
“candidate block”

Eve and Dave needs to find a hash below the
target difficulty to create a new block

15

© UZH 2019

Blockchain Consensus

© UZH 2019

Mechanisms for Distributed Agreement

 Also called “Distributed Consensus” algorithms
 The 4 key characteristics

– Uniform agreement: No two nodes decide differently
– Integrity: No node decides twice
– Validity: If a node decides on value v, then v was proposed by

some node
– Termination: Every node that does not crash eventually decides

on some value
 Given a cluster of N nodes and a set of proposals P1 to

Pm, every non-failing node will eventually decide on a
single proposal Px without the possibility to revoke that
decision. All non-failing nodes will decide on the same Px.

https://pradeeploganathan.com/blockchain/consensus/

© UZH 2019

Overview

Figure

1

2

3

4

Byzantine fault tolerance-
based, which is a more
traditional approach
based on rounds of votes.

Proof-based or leader-based
consensus, whereby a leader

is elected and proposes
a final value

https://blog.acolyer.org/2018/02/12/sok-consensus-in-the-age-ofhttps:/blog.acolyer.org/2018/02/12/sok-consensus-in-the-age-of-blockchains/-blockchains/

© UZH 2019

Classical Consensus Mechanisms (1)

 Classical Consensus Models
– Crash failure models  honest nodes failing
– Byzantine Failure Tolerance (BFT)

• State machine replication
– BFT General’s Problem

HyperLedger (SOLO, Kafka mechanisms), Stellar

© UZH 2019

Byzantine Fault Tolerance (BFT)

 Described as the capacity of a system to handle or
survive unreliable situations and (all kinds of) failures

 Practical BFT (PBFT): assume a small fraction of
nodes as Byzantines (dishonest)

 Other examples: XFT, HoneyBadger

1. A client sends a request to
invoke a service

2. The primary leader multicasts
the requests to the replicas

3. Replicas execute the request
and send a reply to the client

4. The client wats for F+1 replies
from different replicas with the
same result

PBFT property

3 phase protocol

20

© UZH 2019

Classical Consensus Mechanisms (2)

 Elected Leader Models
– Probabilistic elected leader in a

• Lottery-like
• Competition, or
• Probabilistic algorithm

PoX: Proof-of-X, where X=

A: Authority
B: Burn
C: Capacity (storage)
D: Deposit
S: Stake
T: Trust
W: Work
d: delegated

PoW PoS PoC PoT

PoD PoB PoA

Elected Leader

Tendermint Slimcoin Peercoin

Bitcoin Permacoin REMChain
dPoS

EOS Bazo

© UZH 2019

Proof-of-Work (PoW)
 Set of transactions becomes available, a block is

created by utilizing the following data:
– Transaction(s), hash of previous block
– Nonce (arbitrary number, can only be used once)
– Other information (depending on BC)

 Hash of new block is calculated
 Checking performed once hash was computed

– Hash is above the target value → Another miner may have
found a suitable hash, block attached to local BC, but miner
lost the lottery, otherwise nonce will be incremented, retry

– Hash is below the target value → This miner won the lottery
and the new block’s hash determines the PoW result

22

© UZH 2019

Hash-based PoW (1)
 Key: One cannot compute an input from an output

– To find a hash with N zeros at input start, requires 2*N
computations, which proves computational work performed

– Hashing an incrementing “nonce” as hash input, leads to zeros

 Distributed game sets the difficulty N of the game
 Players accumulate points by creating blocks

– Hashing the previous block, finding a hash of the new block
with enough zeros, and transmitting this block to everyone

in 3e-05 seconds, nonce = 0 yielded 0 zeros. value = 4c8f1205f49e70248939df9c7b704ace62c2245aba9e81641edf…
in 0.000138 seconds, nonce = 12 yielded 1 zeros. value = 05017256be77ad2985b36e75e486af325a620a9f29c54…
in 0.000482 seconds, nonce = 112 yielded 2 zeros. value = 00ae7e0956382f55567d0ed9311cfd41dd2cf5f0a7137…
in 0.014505 seconds, nonce = 3728 yielded 3 zeros. value = 000b5a6cfc0f076cd81ed3a60682063887cf055e47b…
in 0.595024 seconds, nonce = 181747 yielded 4 zeros. value = 0000af058b74703b55e27437b89b1ebcc46f45ce55d6….
in 3.491151 seconds, nonce = 1037701 yielded 5 zeros. value = 00000e55bd0d2027f3024c378e0cc511548c94fbeed0e….
in 32.006105 seconds, nonce = 9913520 yielded 6 zeros. value = 00000077a77854ee39dc0dc996dea72dad8852afbde6….
in 590.89462 seconds, nonce = 186867248 yielded 7 zeros. value = 0000000225060b16117b23dbea9ce6be86ac439d….
in 4686.171007 seconds, nonce = 1424462909 yielded 8 zeros. value = 000000002dd743724609a9f57260e2492908d….

23

© UZH 2019

 Blocks are “mined” according to the amount of “tokens”
he or she holds:
– The higher is the number of tokens (coins) at stake, the

higher is the “mining power”
– Nodes gets the block reward as incentive

Proof-of-Stake – PoS (1)

A

B

C

D

E

F

G

H
A H H H F ...

A mine block

H mine block

Tokens

A, H high
B, C, G medium
D, E, F low

bl
oc

kc
ha

in

F mine block

24

© UZH 2019

 Nothing at stake issue:
– Creating forks is “costless” when

someone is not burning an external
resource (e.g., mining power), PoS
alone is “unworkable”

Proof-of-Stake – PoS (2)

25

© UZH 2019

 PoA is a modified form of PoS where instead of stake
a validator’s identity performs the role of stake

 Authorities (nodes) are allowed to create news blocks
– Clique (practical implementation) of PoA

• Requires N/2+1 (more than 50%) of signers to be honest
• Authorities sign new blocks in a Round-robin (RR) fashion

Proof-of-Authority (PoA)

A

B

C

D

E

F

G

H
A D E H A ...

A, D, E, H are authorities

A sign block

D sign block

E sign block

H sign block

bl
oc

kc
ha

in

RR Turn

26

© UZH 2019

 Hybrid Consensus Models
− Using a single consensus has many limitations

− Combine different consensus mechanisms

e.g., Supply-chain e.g., Cryptocurrency

Ethereum EthereumA

B

D

G

E

F

PoA PoW

Hybrid Consensus

Hybrid
Single

C

27

© UZH 2019

HyperLedger

Hybrid Sharding

 Hybrid Sharding
− System can be organized into shards (communities)
− Cross-chain communications

Ethereum Ethereum
PoA PoW

Community A Community B

PBFT

Community C

A

B

D

C

G

E

F

H

Cross-chain
Communication

28

© UZH 2019

Comparison of Consensus Mechanisms

Mecha-
nism

Security Level Depending
on

Scalability Remarks

BFT “Reasonable”
Leader pre-elected
51% failure

- Medium Trust in pre-election

dBFT “Reasonable”
Set of leaders pre-
elected

- Medium Trust in set of leaders

PoW High
51% attack

Hashes Controversial Energy consumption high,
needed to ensure high
security level (by design)

PoS Unknown
“Nothing-at-Stake”

PoW-based
“stake”

Under
discussion

“Costless” forking, thus,
measurable assets needed

PoA Identity-based PoS, PoW Under
discussion

Authorities required

Shards Unknown Any PoX Unknown Communities, interoperability

© UZH 2019

Blockchain Adoption

© UZH 2019

Choosing a Blockchain

 Not a trivial task
– Over 2000 Cryptocurrencies available [1]

 Myriad of Facets/Parameters
– Marketcap

• Value to buy all shares at today’s market value
– Community involvement

• Telegram chats, discussion channels
– Full Node / Miners Geolocation

• Politics, possibility of centralization
– Technical concerns

• Transactions per second, implementation language, design choices
– Security

• Hashing algorithm, possible attack vectors [1] https://coinmarketcap.com/

31

© UZH 2019

Deployment Models
Public

Private

Permissioned

Permissionless

32

© UZH 2019

G. Greenspan (2015)
Key Points When to use BC Traditional DBs

Database Shared Centralized, Shared

Multiple writers Multiple writers Single or multiple

Absense of trust Database with multiple
non-trusting writers

Trust

Disintermediation No trusted intermediaries Trusted intermediary

Transaction interaction There is a dependency
between transactions

Trust the intermediary to
mediate interactions

Set the rules Clear rules applied to all
writers

Different rules based on
roles/groups of writers

*Pick your validators Trust in the validation scheme (single entity or
democratic)

*Back your assets Translation of digital assets into the real world

*Recommendations

33

© UZH 2019

Based on
K. Wüst, A. Gervais

K. Wüst, A. Gervais (2018)

34

© UZH 2019

K. Wüst, A. Gervais (2018) – Cont.

 Performance and scalability requirements impacts of
alternative BC solutions and data bases in comparison

BFT: Byzantine Fault Tolerance
PBFT: Practical Byzantine Fault Tolerance

35

© UZH 2019

Application Trade-offs
(B. Rodrigues, T. Bocek, B. Stiller, 2018)
 Based on Blockchain characteristics:

– Performance vs Reliability
• BC offers slow throughput but more robustness than traditional DBs

– Confidentiality vs Transparency
• More transparency (trust) and less confidentiality

– Distributed vs centralized control
• No central authority (PoW) or trusted nodes (PBFT)

 Limited storage
 Unknown regulations

– Different countries, different regulations
 Lack of standards

– Blockchain 4.0 target
36

© UZH 2019

Distributed vs. Centralized Control

 Distributed control based on elected leader (e.g., PoW)
 Partially based on selected leaders (e.g., PoA, PBFT)
 Centralized Control based on trust (e.g., traditional

databases)

 Multiple possibilities
– At the same time...

37

© UZH 2019

Mapping Tradeoffs to Blockchain Types
Public

Permissionless Public Permissioned Private
Permissionless

Private
Permissioned

Tr
an

sp
ar

en
cy

World
visibility

World
visibility Community visibility Role-based visibility

C
on

tr
ol Distributed due to the

election process

Distributed but
validators are defined

in a selection
process

Distributed but
validators are defined

in a selection
process

Centralized based on
trusted nodes

R
el

ia
bi

lit
y

Full replication (light
nodes always rely on

full nodes)

Full or partial
replication (possible

to define super nodes)

Full or partial
replication

(possible to define
super nodes)

Full or partial
replication (master-

slave)

Pe
rf

or
m

an
ce

Slow due the
consensus and

replication models

Intermediate
depending on

consensus and
replication models

Intermediate
depending on

consensus and
replication models

Fast because its
mostly centrally

managed

38

© UZH 2019

Part II - Smart Contracts

© UZH 2019

Smart Contracts

 A Smart Contract (SC) may reside inside transactions
– Executed & validated on every node upon persisting that block

• E.g., for Bitcoins (blockchain-based cryptocurrency) SCs specify
how to withdraw, escrow, refund, or transfer BTC from A to B

 SCs first mentioned in 1996:

 Smart contracts alone are not “smart”
– They need an infrastructure (“technology“)
– A blockchain forms the ideal, distributed basis for SCs

 The legal relevance of “coded”, more general contracts?

A smart contract is a computerized transaction protocol that executes the terms of a contract. The
general objectives of [a] smart contract[’s] design are to satisfy common contractual conditions (such
as payment terms, liens, confidentiality, and even enforcement), minimize exceptions both malicious
and accidental, and minimize the need for trusted intermediaries. Related economic goals include
lowering fraud loss, arbitrations and enforcement costs, and other transaction costs. .

N. Szabo

© UZH 2019

Ethereum/Solidity

tx: deploy contract

SC Address
‘‘0x950041c1599529a9f64cf2be59ffb...’’

ID

41

© UZH 2019

Smart Contract Best Practices

 Blockchain is a relatively new and most
implementations are experimental

 SC programming requires a different mindset:
– Changes are not possible once SC is deployed
– Cost of failures can be high (e.g., DAO)
– Still…. not immune to vulnerabilities

 Best practices are essential!!
– Code security, efficiency, readability, …

https://consensys.github.io/smart-contract-best-practices/general_philosophy/

42

© UZH 2019

Prepare for failure

SC Best
Practices

Prepare for failure

Rollout carefully

Keep contracts simple

Stay up to date

Be aware of blockchain
properties

Fundamental trade-offs

• Pause the contract when things
are going wrong ('circuit
breaker')

• Manage the amount of money
at risk (rate limiting, maximum
usage)

• Have an effective upgrade path
for bug fixes and improvements

43

© UZH 2019

Rollout Carefully

Best
Practices

Prepare for failure

Rollout carefully

Keep contracts simple

Stay up to date

Be aware of blockchain
properties

Fundamental trade-offs

• Test contracts thoroughly, and
add tests whenever new attack
vectors are discovered

• Provide bug bounties starting
from alpha testnet releases

• Rollout in phases, with
increasing usage and testing in
each phase

44

© UZH 2019

Keep Contracts Simple

Best
Practices

Prepare for failure

Rollout carefully

Keep contracts simple

Stay up to date

Be aware of blockchain
properties

Fundamental trade-offs

• Ensure the contract logic is simple
• Modularize code to keep contracts

and functions small
• Use already-written tools or code

where possible
• Prefer clarity to performance

whenever possible
• Only use the blockchain for the

parts of your system that require
decentralization

45

© UZH 2019

Stay Up to Date

Best
Practices

Prepare for failure

Rollout carefully

Keep contracts simple

Stay up to date

Be aware of blockchain
properties

Fundamental trade-offs

• Check your contracts for any
new bug as soon as it is
discovered

• Upgrade to the latest version
of any tool or library as soon
as possible

• Adopt new security techniques
that appear useful

46

© UZH 2019

Awareness of BC Properties

Best
Practices

Prepare for failure

Rollout carefully

Keep contracts simple

Stay up to date

Be aware of blockchain
properties

Fundamental trade-offs

• Be extremely careful about external
contract calls, which may execute
malicious code and change control flow.

• Understand that your public functions are
public, and may be called maliciously and
in any order. The private data in smart
contracts is also viewable by anyone.

• Keep gas costs and the block gas limit in
mind.

• Be aware that timestamps are imprecise
on a blockchain, miners can influence the
time of execution of a transaction within a
margin of several seconds.

• Randomness is non-trivial on blockchain,
most approaches to random number
generation are gameable on a
blockchain.

47

© UZH 2019

Fundamental Trade-offs

SC Best
Practices

Prepare for failure

Rollout carefully

Keep contracts simple

Stay up to date

Be aware of blockchain
properties

Fundamental trade-offs
• Rigid versus Upgradeable
• Monolithic versus Modular
• Duplication versus Reuse

48

© UZH 2019

Tools for Security Visualization

 Surya:
– Visual outputs and information about the contracts' structure.

Also supports querying the function call graph.
 Solgraph:

– Generates a DOT graph that visualizes function control flow
and highlights potential security vulnerabilities.

 EVM Lab
– Rich tool package to interact with the EVM. Includes a VM,

Etherchain API, and a trace-viewer.
 ethereum-graph-debugger

– A graphical EVM debugger. Displays the entire program
control flow graph.

49

© UZH 2019

Smart Contract Security Examples

 Transaction Ordering
> Blockchain Shop

 Reentrancy Attacks
> Good ATM | Bad ATM

Source: James Chiang

50

© UZH 2019

Transaction Ordering

contract Store {
price = 100;
userCredit = 120;

function buy() payable {
//

}

function setPrice() {
//

}
...

}

User

Contract Owner

1. checks price

2. buys

© UZH 2019

Transaction Ordering

contract Store {
price = 120;
userCredit = 120;

function buy() payable {
//

}

function setPrice() {
//

}
...

}

User

Contract Owner

1. checks price

2a. buys

2b. increases price

If 2b is mined before 2a, user will
overpay for purchase

e.g. to 120

© UZH 2019

contract Store {
price = 100;

function buy(desiredPrice) {
// desiredPrice == price
// ...

}

function setPrice(newPrice) {
// price = newPrice

}
...

}

Transaction Order Guard

User

Contract Owner

1. checks price

2. buy(100)

© UZH 2019

contract Store {
price = 120;

function buy(desiredPrice) {
// desiredPrice == price
// ...

}

function setPrice(newPrice) {
// price = newPrice
// ...

}
...

}

2a. buy(100)

Transaction Order Guard

User

Contract Owner

1. checks price

2b. increases price

e.g. to 120

X

© UZH 2019

Smart Contract Security

 Transaction Ordering
> Blockchain Shop

 Reentrancy Attacks
> Good ATM | Bad ATM

55

© UZH 2019

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

ATM Contract

User

ATM.withdraw(amount)

msg.sender
.transfer(amount)

0xc5f... 0x627...

© UZH 2019

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Reentrancy Attack

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

User

0xc5f... 0x627...0xf17...

© UZH 2019

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Reentrancy Attack

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

User

0xc5f... 0x627...0xf17...

msg.sender.call.value(amount)()

© UZH 2019

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Reentrancy Attack

User

0xc5f... 0x627...0xf17...

balances not updated yet

© UZH 2019

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Reentrancy Attack

User

0xc5f... 0x627...0xf17...

© UZH 2019

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Reentrancy Attack

User

0xc5f... 0x627...0xf17...

until out of balance ATM
or out of gas BadATM

© UZH 2019

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Reentrancy Attack

User

0xc5f... 0x627...0xf17...

update balance
before transfer

© UZH 2019

contract ATM {
enum States {
Ready,
Pending

}
function withdraw() {
// checks if ATM is Ready
// set ATM to Pending
// check balances & transfer

}
...

}

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Contract Locks

User

0xc5f... 0x627...0xf17...

© UZH 2019

contract ATM {
enum States {
Ready,
Pending

}
function withdraw() {
// checks if ATM is Ready
// set ATM to Pending
// check balances & transfer

}
...

}

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Contract Locks

User

0xc5f... 0x627...0xf17...

© UZH 2019

contract ATM {
enum States {
Ready,
Pending

}
function withdraw() {
// checks if ATM is Ready
// set ATM to Pending
// check balances & transfer

}
...

}

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Contract Locks

User

0xc5f... 0x627...0xf17...

© UZH 2019

contract BadATM {

function attack() {
// calls withdraw

}

function deposit() {
// calls withdraw again
// until reentrancy target

}
...

}

contract ATM {
enum States {
Ready,
Pending

}
function withdraw() {
// checks if ATM is Ready
// set ATM to Pending
// check balances & transfer

}
...

}

Contract Locks

User

0xc5f... 0x627...0xf17...

x

© UZH 2019

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

Reentrancy Attack

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

User

0xc5f... 0x627...0xf17...

msg.sender.call.value(amount)()

© UZH 2019

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}
...

}

The transfer-Function

contract ATM {

mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balances

}
...

}

User

0xc5f... 0x627...0xf17...

msg.sender.transfer(amount)

 Only a small amount of gas is sent along (21,000 gas).
 The receiver can only emit one single event at max, safe by

“accident”.

© UZH 2019

In Conclusion - Best Practices

 Prepare for failure
 Rollout carefully
 Keep contracts simple
 Stay up to date
 Be aware of blockchain properties

Others
 Safe Math (Overflow)
 Error Handling (Revert / Require / Throw)
 Best Practices e.g. Recommendation for Smart Contract

Security in Solidity

https://consensys.github.io/smart-contract-best-practices/recommendations/

© UZH 2019

Part III - Discussion and
Considerations

© UZH 2019

Overview of Blockchain Challenges
– How to handle reliably tangible (non-digital) assets in BC?

• A Bitcoin is represented as bits vs. property, real estate as physical items
– Sustainability: Energy efficiency of consensus mechanisms?

• Energy consumption for Bitcoin BC alone in 2017 ≈ Iceland‘s production
– Scalability: BC throughput as a number of transactions per

second, volume of data persisted in Mega (?) bytes, costs?
• E.g., BC sizes grow faster than the density of HDDs/SSDs
• BC (always) better than a (distributed) data base? Exorbitant costs?

– Identity management (users, objects) and anonymity
– Standardized APIs for switching BCs for BC-based dapps

• E.g., in contrast, databases from different vendors offer “similar” APIs
– Many economic effects of BC-based cryptocurrencies unknown

• Role of national “e”-currency, interrelationships of about 2000+ cryptoc.
– Legal/regulative compliance, societal/governmental acceptance

71

© UZH 2019

Mapping Challenges (1)

Public
Permissionless

Public
Permissioned

Private
Permissionless

Private
Permissioned

Scalability
Public usage → size
growth hard to be

controlled

Only selected nodes
create blocks → more

control over size

Blockchain designed for
specific use case →

controlled size

Blockchain designed
for specific use case
→ controlled size

Data Storage
Not designed as DB
→ High fees, size is

limited

Know writers → No
fees, no size limit

Know participants →
Low fees, partial size

limit

Know writers → No
fees, no size limit

Sustainability

PoW →
computational power

has no “social
benefit”

PoA → Sustainable,
no significant
computations

PoS → Sustainable,
no significant
computations

PoA → Sustainable,
no significant
computations

Identity
Management

Pseudo-anonymity,
data visible → Hard to
link to physical user,

data encryption

Data is supposed to
be visible →

Ensuring integrity

Know participants →
Trusted environment

Know participants →
Trusted environment

72

© UZH 2019

Mapping Challenges (2)

Public
Permissionless

Public
Permissioned

Private
Permissionless

Private
Permissioned

Standardization
No standard →

Complex
Interoperability

No standard →
Complex

Interoperability

No standard →
Complex

Interoperability

No standard →
Complex

Interoperability

Trust
Data in the BC →

Trusted
Input data → Untrusted

Know writers →
Trusted

Know participants →
Trusted Environment

Know participants →
Trusted Environment

Economics and
Regulations

No clear regulations →
Gray area

No clear regulations
→ Gray area

Regulated by
participants → Defined

rules

Regulated by
participants → Defined

rules

73

© UZH 2019

Public Blockchain Risks
 BCs’ “true semantics” depends on the input received!
 BCs’ security, privacy, and reliability

• Unknown attack vectors (& 51% attack), Programming errors in SCs
• Alternative consensus mechanisms beyond PoW? Security at stake?

– The breaking of currently used security algorithms
• Long-term storage? Quantum Computing impacts?

– Privacy: persisted data at stake? GDPR?
– The right to forget vs. immutability
– Transparency (public knowledge of BC) vs. privacy (private data)

 Networking infrastructure’s reliability (critical infrastructures)
• Lacking Internet connectivity for a “longer” period of time?

 Economic/legal risks (cryptocurrency/tokens/coins, BC)
• Fraudulent profitability projections, volatility, dispute resolutions

74

© UZH 2019

Conclusions
1. Blockchains do show a logical evolution of linked lists,

however, they “exaggerate” processing demands
– Especially Proof-of-Work (PoW), but this ensures immutability

2. The technical future of blockchains is based on
security ingredients of today’s technology, however,
long-term storage and security management is not
known by now
– E.g., unknown impact of Quantum computing (on all IT!)

3. Blockchains are no revolution, but a typical Computer
Science (Abstract Data Type) evolution of linked lists
– The “distribution” of consensus does not always make sense
– Any system as of the past has not been replaced fully by a

BC
75

© UZH 2019

Thank you for your attention.

Questions?

	Blockchain and Smart Contracts – From Theory to Practice
	Schedule
	Part I – Blockchain Motivation
	Blockchain 1.0
	Blockchain 2.0
	Blockchain 3.0
	Blockchain 4.0
	Blockchain Eras and Evolution
	Driving Questions
	Blockchain (BC) Basics
	Definition
	Permissions and Transparency
	Block
	Integrity, Merkle Tree
	Transactions
	Blockchain Consensus
	Mechanisms for Distributed Agreement
	Overview
	Classical Consensus Mechanisms (1)
	Byzantine Fault Tolerance (BFT)
	Classical Consensus Mechanisms (2)
	Proof-of-Work (PoW)
	Hash-based PoW (1)
	Proof-of-Stake – PoS (1)
	Proof-of-Stake – PoS (2)
	Proof-of-Authority (PoA)
	Hybrid Consensus
	Hybrid Sharding
	Comparison of Consensus Mechanisms
	Blockchain Adoption
	Choosing a Blockchain
	Deployment Models
	G. Greenspan (2015)
	K. Wüst, A. Gervais (2018)
	K. Wüst, A. Gervais (2018) – Cont.
	Application Trade-offs�(B. Rodrigues, T. Bocek, B. Stiller, 2018)
	Distributed vs. Centralized Control
	Mapping Tradeoffs to Blockchain Types
	Part II - Smart Contracts
	Smart Contracts
	Ethereum/Solidity
	Smart Contract Best Practices
	Prepare for failure
	Rollout Carefully
	Keep Contracts Simple
	Stay Up to Date
	Awareness of BC Properties
	Fundamental Trade-offs
	Tools for Security Visualization
	Smart Contract Security Examples
	Transaction Ordering
	Transaction Ordering
	Transaction Order Guard
	Transaction Order Guard
	Smart Contract Security
	ATM Contract
	Reentrancy Attack
	Reentrancy Attack
	Reentrancy Attack
	Reentrancy Attack
	Reentrancy Attack
	Reentrancy Attack
	Contract Locks
	Contract Locks
	Contract Locks
	Contract Locks
	Reentrancy Attack
	The transfer-Function
	In Conclusion - Best Practices
	Part III - Discussion and Considerations
	Overview of Blockchain Challenges
	Mapping Challenges (1)
	Mapping Challenges (2)
	Public Blockchain Risks
	Conclusions
	Thank you for your attention.

