IEEE ICBC 2019 Tutorial, Seoul, Korea, May 14, 2019

Blockchain and Smart Contracts —
From Theory to Practice

Bruno Rodrigues?, Eder Scheidl, Roman Blum?,
Thomas Bocek?, Burkhard Stiller?
lCommunication Systems Group CSG, University of Zirich UZH, Switzerland
2Hochschule fur Technik Rapperswil HSR, Switzerland
[rodrigues|scheid;stiller|@ifi.uzh.ch

[roman.blumithomas.bocek]@hsr.ch

N=p /z UniverSity Of . :?)F:IHSCHULE FOR TECHNIK
LI . UZH RAPPERSWIL
Zurich . .

© UZH 2019

Schedule

a Part | — Blockchain Motivation
— Timeline and Basics
— Consensus Mechanisms
— Management Aspects

a Part Il — Smart Contracts
— Smart Contract
— Best Practices
— Security
a Part lll — Discussion & Considerations
— Challenges and Risks
— Considerations

© UZH 2019 2

Part | — Blockchain Motivation

© UZH 2019

Blockchain 1.0

o Digital Currency
— Decentralized payment system

— Bitcoin as the father of digital currencies

 Still, not much awareness of (other) Blockchain capabilities
— Proof-of-Work (PoW)

ﬁi. 2 B 'ﬁEﬁ 0-0 &Y © O %

0 o o o o - >— o0
20508 Jan. 2009 Oct. 2009 May 2010 Nov. 52010 Feb 2011 20111:2012 Jun 2012 Sep':2012 Mar 2013
I BTC Genesis Block / Two slices of for \i 1 BTC =1 USD l Ripple is launched focusing ! BTC Market Cap
Bitcoin (BTC) BTC Network i 10’000 BTC Ik Banking systems integration reaches 1B USD
: : etwork” goes live. BTC Market Cap i ' Bitcoin Foundation i
Whitepaper FX exchange for BTCs reaches 1M USD D'g't;‘:)\r')ﬁ;itggam :
o «Experimental» stage - o Discovery of :‘ Bitcoin forks (Litecoin, g
Non-existent Initial stage cryptocurrencies E Dodgecoin, etc) E Central stage

o > = ——

Public Perception

© UZH 2019 4

https://bitcointalk.org/index.php?topic=137.msg1195

Blockchain 2.0

o Smart Contracts
— Ethereum unlocks the blockchain potential beyond

cryptocurrencies
— Blockchain is able to run computer programs in a transparent
and verifiable manner AlNasdaq &) wweemepcss

Zi S --
0 0 o

S
B wm 4 4 Pl B
® ® * e

Dec 2013 Jan 2014 Feb 2014 Jul 2014 2015 2015 Mar 2016 Jun 016 Sep 2016
Ethereum is Growth of IBlockchain Attacks on Ethereum projectis Investors joins Digital Ethereum goes Ethereum goes DAO Workshop
announced crypto start-ups exchanges launched. Investors Asset Holdings, which live (Frontier) in in production (Decentralized Blockchain on
by Vitalik B. i makes MT.GOX start to recognize represents Wall July. (Homestead). Autonomous Healthcare
! ! to collapse Ethereum’s potential Street’'s embrace of Hyperledger is Organizatio) is g|ockchain
E i ! Blockchain. NASDAQ released in hacked, losses |nteroperability
| : | also commits to December. estimatedin v/ Buterin
: , : : Blockchain 50M USD.
«Bldckchain can be uskd | .
beyand cryptocurrencigs» «Blockchain is definitely positive!» «Avoiding the BC project» i
S o o >
— ¢ —>
Continuous increase on the number of Public Perception Awareness for vulnerabilities in

cryptocurrencies Smart Contracts

© UZH 2019 5

https://www.multichain.com/blog/2015/11/avoiding-pointless-blockchain-project/

Blockchain 3.0

— Production stage:
» Large number of applications

— Scalability/Performance issues:
* Need for performance = new consensus protocols /\/'
* Need for storage - off-chain storage tools

Blockchain Startup Landscape

¢’ HYPERLEDGER gmm
—_——— = é Bickehain Conating App Do [gentiry & Repumticn Govamance & Tr
5 ,\/l = == P wport °© 2 e B || e | ctomeah
1 ====T= u . <l B s G B PR
/ ===7= ‘ Sinds e kA e
 » 1 i :.:_- T ey EPBIE L agean = = o ATer P —
N modum ﬂ_ll[l L2 MAERSK M v T’ BlockAuth ' & IOTA T S SN A e
Legal. Ausit & Tax Cnts Avryies,
ove S1Libra Y e &80y o
e S p e R W
aliet e es
nope @ s factam E e
B wemes : - i -
e e st
— @ = e oe @ Pur
FRNNE, e dr B T e N
RPN R
ipple ot Qgom § - gy <cmon ! (=
Do A -

© UZH 2019 6

Blockchain 4.0

o Ecosystem and Industry Integration
— Making blockchain effective in industry
— Decentralized and disconnected blockchain n

» Vendor-specific blockchain technology, interoperab
— Need for standardization

As of today
>
€% origintrail |<>| wanchain . CHSMOS AN .
INTERNET OF BLOCKCHAINS s a— m rOSUS
- & (:) . ARK.io
I BLOCKONOMI ** Gt [| HERDIUS .. blockstack .
: 3% CROWD

AIQON co0 NER Tolkadot.
- INTERLEDGER NAUASAUN I 5] ¢
The Third Generation Blockchain Network Payments across payment network .HERE TO STAY

© UZH 2019 7

Blockchain Eras and Evolution

o 4 different BC eras are running in parallel today

@ « Digital
Currency
* Blockchain
* Proof-of-Work
— 1 . O — Dece m ber 08/J an u ary 09 : B itCO i n S Cryptocurrencies: 2095 - Markets: 15834

« More than 2100 cryptocurrencies available today @ CoinMarketCap
2.0 — 2012-14: Ethereum, Smart Contracts, Solidity, ...

— April 2012: Decentralized Apps (dApps) — “Satoshi Dice”

_ https://hackernoon.com/dapp-and-things-you-need-to-know-4f50853a4cb7
* Running on peer-to-peer network, all data transparent and tamper-proof

4.0 — App. 2015: BC ecosystems and industrial integration
e Countless Blockchain projects in many fields
— FinTech, supply-chain, governmental, identity, ...

© UZH 2019 8

Driving Questions

o How and under which conditions to use blockchain?
— Creator (e.g., researcher) or investor point-of-view
0 Is there a right or wrong? A roadmap " ._@ 5

for blockchain usage, possibly. . (/=
— There Is no simple answer ... Developer/ . $

Creator 9 mi lI

Investor

Performance

‘ é'\\o‘\ What are application — @9"’%
W requirements?" teroperabily

5.0

DN

Scalablllty

\(\?;\0 "Which different types of Permwed

0 I 1
%\od‘ blockchain one can offer?” row eos 5o

© UZH 2019 9

Blockchain (BC) Basics

© UZH 2019

Definition

o A Blockchain (BC) or Distributed Ledger (DL) is a
decentralized digital ledger that transparently and
permanently record blocks of transactions across
computers based on a consensus algorithm without
modifying the subsequent blocks.

B T E E The genesis or the first
Hlo(: er block define the settings of
eader

Dat the blockchain
d

A blockchain is similar to a

linked list except that Blocks
are added according to a
consensus protocol

© UZH 2019

Permissions and Transparency

Public read

E-government N
am ldentity A w
BlockAuth uport Cryptocurrencies
s O

efhereum

Permissioned

Permissionless

Please, use a
traditional database!

Supply-chain

2

;s origintrail

Private read

© UZH 2019 12

Block

0 A block is a structure to store data (transactions)
— Header: information to identify the block.

— Data: set of stored transactions

The block hash is the identifier of all
transactions in the block AND the block

header —_—
—> MErkle ROOt \
2211ujmg 1os I I

m
A+B ngaBaa13
u
Merkle Root 'ngaBasI13u

321 |U ms1 5

1dx91Jz3S?

H(C+|\|
Ix9da8aa13

Tree

d?sz er B

Merk/e

62LmshU2 8

© UZH 2019 13

Integrity, Merkle Tree

o In practice, the Merkle Tree guarantees immutabllity
Then, a parallel (forked)

chain is created \

- I
a34
> e—=Ihe Merkle Root
2\| will be different

N resulting in a
different Block

Imagine if one wants to remove/change a
transaction
© UZH 2019 14

Transactions

o How are transactions stored in a block?

— Transaction pool or mempool

 Temporary storage structure (RAM) available on each full node
(Ethereum)

Bob

- N\

nck B2 \din Transaction Cool (or mempool)

Eve and Dave needs to find a hash below the
target difficulty to 82(333%‘95%"\/ block

in 0.000138 seconds, nonce = 12 yielded gaim 15b36e75e486af3252620a9129¢54. ..

- ——

© UZH 2019 15

Blockchain Consensus

© UZH 2019

Mechanisms for Distributed Agreement

0 Also called “Distributed Consensus” algorithms

4 The 4 key CharaCter|St|CS https://pradeeploganathan.com/blockchain/consensus/
— Uniform agreement: No two nodes decide differently
— Integrity: No node decides twice

— Validity: If a node decides on value v, then v was proposed by
some node

— Termination: Every node that does not crash eventually decides
on some value

o Given a cluster of N nodes and a set of proposals P, to
P, every non-failing node will eventually decide on a
single proposal P, without the possibility to revoke that
decision. All non-failing nodes will decide on the same P,.

© UZH 2019

Overview

Byzantine fault tolerance-""""7“< Proof-based or leader-based
based, which is a mogg, """ .. w..CONSensus, whereby a leader

traditional approach ., 1S elected and proposes
s :
based on rounds of votes! 2 \me Lot afinal value
ChLmnﬁ'aMSam\, e Pow
PRFT Pecormentar> Jomoren B,
XPT L
buo\éc!ﬁ (yroaties

20C _ /Croh
M‘{\L // &Muu-t
bruadcadce

MR

© UZH 2019

https://blog.acolyer.org/2018/02/12/sok-consensus-in-the-age-ofhttps:/blog.acolyer.org/2018/02/12/sok-consensus-in-the-age-of-blockchains/-blockchains/

Classical Consensus Mechanisms (1)

o Classical Consensus Models
— Crash failure models - honest nodes failing

— Byzantine Failure Tolerance (BFT)
HyperLedger (SOLO, Kafka mechanisms), Stellar

« State machine replication
— BFT General’s Problem

Imagine Rome being

besieged by nine armies,

each commanded by a
(Byzantine) general.

© UZH 2019

In order to launch a
succesful attack or retreat,
all armies have to do the
same, otherwise they will
be decimated by Rome's
armies.

The decision to either
attack or retreat is put up
to a vote. Whichever option
receives mare than 50% of
the votes, that's what the
Generals will do (retreat in
the example above).

Problem 1
The generals communicate
by using couriers, who
have to cross unknown
areas controlled by the
Romans, risking capture or
their message hecoming
corrupt.

(]
@ "0

ASh

Problem 2
Each of the generals could
be bribed by the Romans:
Traitorous Generals.

Problem 3
Any of the Generals can
make the wrong decision,
regardless of the vote:
Improperly Functioning
Generals.

Byzantine Fault Tolerance (BFT)

o Described as the capacity of a system to handle or
survive unreliable situations and (all kinds of) failures

o Practical BFT (PBFT): assume a small fraction of
nodes as Byzantines (dishonest)

1. Aclient sends a request to
invoke a service

2. The primary leader multicasts
the requests to the replicas

3. Replicas execute the request
and send a reply to the client

4. The client wats for F+1 replies
from different replicas with the
same result

Client

Leader
Replica
Replica

Replica

REQUERT

3 phase protocol

FRE.-
FEEFARE

FREFARE | COMMIT REPLY

T

i\i

o Other examples: XFT, HoneyBadger

© UZH 2019

20

n = Total # of nodes in network

f= n:; 1 (Max # of faulty nodes)

PBFT property

Classical Consensus Mechanisms (2)

0 Elected Leader Models

— Probabilistic elected leader in a

» Lottery-like
o Competition, or
* Probabilistic algorithm

Elected Leader

i

Pow dPoS PoS PoC PoT

Bitcoin Em Permacoin REMChain

PoD PoB PoOA

Tendermint Slimcoin Peercoin

© UZH 2019

PoX: Proof-of-X, where X=

A: Authority

B: Burn

C. Capacity (storage)
D: Deposit

S: Stake

T: Trust

W: Work

d: delegated

Proof-of-Work (PoW)

a Set of transactions becomes available, a block is

created by utilizing the following data:

— Transaction(s), hash of previous block

— Nonce (arbitrary number, can only be used once)
— Other information (depending on BC)

0 Hash of new block is calculated

o Checking performed once hash was computed
— Hash is above the target value — Another miner may have
found a suitable hash, block attached to local BC, but miner
lost the lottery, otherwise nonce will be incremented, retry
— Hash is below the target value — This miner won the lottery
and the new block’s hash determines the PoW result

© UZH 2019 22

Hash-based PoW (1)

a Key: One cannot compute an input from an output

— To find a hash with N zeros at input start, requires 2*N
computations, which proves computational work performed
— Hashing an incrementing “nonce” as hash input, leads to zeros

in 3e-05 seconds, nonce = 0 yielded 0 zeros. value = 4c8f1205f49e70248939df9c7b704ace62c2245aba%9e81641edf...

in 0.000138 seconds, nonce = 12 yielded 1 zeros. value = 05017256be77ad2985b36e75e486af325a620a9f29¢c54...

in 0.000482 seconds, nonce = 112 yielded 2 zeros. value = 00ae7e0956382f55567d0ed9311cfd41dd2cf5f0a7137...

in 0.014505 seconds, nonce = 3728 yielded 3 zeros. value = 000b5a6¢fc0f076cd81ed3a60682063887cf055e47h...

in 0.595024 seconds, nonce = 181747 yielded 4 zeros. value = 0000af058b74703b55e27437b89blebcc46f45ce55d6....

in 3.491151 seconds, nonce = 1037701 yielded 5 zeros. value = 00000e55bd0d2027f3024c378e0cc511548c94fbeedOe....
in 32.006105 seconds, nonce = 9913520 yielded 6 zeros. value = 00000077a77854ee39dc0dc996dea72dad8852afbdesb....
in 590.89462 seconds, nonce = 186867248 yielded 7 zeros. value = 0000000225060b16117b23dbea9ce6be86ac439d....
in 4686.171007 seconds, nonce = 1424462909 yielded 8 zeros. value = 000000002dd743724609a9f57260e2492908d....

o Distributed game sets the difficulty N of the game

o Players accumulate points by creating blocks

— Hashing the previous block, finding a hash of the new block
with enough zeros, and transmitting this block to everyone

© UZH 2019 23

Proof-of-Stake — PoS (1)

0 Blocks are “mined” according to the amount of “tokens”

he or she holds:

— The higher is the number of tokens (coins) at stake, the
higher is the “mining power”

— Nodes gets the block reward as incentive

F mine block
H mine block

/ D =
S N/ [>N - N
'S
ig AL HEHIFH F
AN D - .
A mine block \ [§#T0kens
E . A, Hhigh :
. B, C, G medium
D, E F '

© UZH 2019 24

Proof-of-Stake — PoS (2)

o Nothing at stake issue:

— Creating forks is “costless” when ‘
someone is not burning an external All PoS validators
L. " choose this chain
resource (e.g., mining power), PoS N
alone is “unworkable” . { } G |
Chain dies - . . Vero points all
staking power (1%)
~— here
Sends Bitcoin
off exchange
NI N,
Vero buys Bitcoin _____
on exchange))
Vero sends crypto to r;? f;? Vero sends same
exchange | A B |~ cryptoto herself

© UZH 2019 25

Proof-of-Authority (PoA)

o PoA is a modified form of PoS where instead of stake
a validator’s identity performs the role of stake

o Authorities (nodes) are allowed to create news blocks

— Clique (practical implementation) of PoOA

* Requires N/2+1 (more than 50%) of signers to be honest

» Authorities sign new blocks in a Round-robin (RR) fashion
D sign block

H sign block

blockchair
>

A sign block

E sign block ' A, D, E, H are authorities |

© UZH 2019 26

Hybrid Consensus

o Hybrid Consensus Models

— Using a single consensus has many limitations
— Combine different consensus mechanisms

S
. "E&u:ﬂ\‘“‘l ///@\\\
'l: Soci) e \\\
Al A
/___, cmhsdun;? - @ @ Hybrid
WG, t Peo\';veum ; O Single
N o /
5“&“- mhf . //
M A\ - ///
POFT«+ ~~{ : -
(ncanwivey Solidany e.g., Supply-chain e.g., Cryptocurrency

© UZH 2019 27

Hybrid Sharding

o Hybrid Sharding

— System can be organized into shards (communities)
— Cross-chain communications

H“fM! wﬁ
(Ml\!lp\l.mwﬂﬂﬁﬂh) Chows Spaca.

PoW

/ \ \ C:am-\xl.ﬁ.o\wf .
Wd"ﬂ"* 1lIl!.';tm-"; ! h& // CommunityIC \\
Comm e, | / \ .
s . l HyperLedger } Cross-chain
i 3 \\ PBF‘VI / Communication

© UZH 2019 28

/r)CO

Comparison of Consensus Mechanismg*«

Securlty Level Dependlng Scalability
nism

“Reasonable” Medium
Leader pre-elected
51% failure

dBFT “Reasonable” - Medium
Set of leaders pre-
elected
PoW High Hashes Controversial

51% attack

PoS Unknown PoW-based Under
“Nothing-at-Stake” “stake” discussion

PoA ldentity-based PoS, PoW Under
discussion

Shards Unknown Any PoX Unknown

© UZH 2019

Trust in pre-election

Trust in set of leaders

Energy consumption high,
needed to ensure high
security level (by design)

“Costless” forking, thus,
measurable assets needed

Authorities required

Communities, interoperability

Blockchain Adoption

© UZH 2019

Choosing a Blockchain

Posted November 22 2015 by Gideon Greenspan in Private blockchains.
Avoiding the pointless blockchain project

How to determine if you've found a real blockchain use case

Do you need a Blockchain?

Karl Wiist Arthur Gervais
Department of Computer Science Department of Computing
1 . ETH Zurich Imperial College London
The Use Of BI OCkChaI ns. karl.wuest@inf.ethz.ch a.gervais @ imperial.ac.uk

Application-Driven Analysis
of Applicability

Bruno Rodrigues, Thomas Bocek, Burkhard Stiller
Communication Systems Group (CSG), Department of Informatics (Ifl), Universitit Ziirich (UZH),
Zirich, Switzerland

© UZH 2019 31

Deployment Models

Public

Permissioned

Permissionless

Private

© UZH 2019 32

G. Greenspan (2015)

Key Points When to use BC Traditional DBs

Database Shared Centralized, Shared
Multiple writers Multiple writers Single or multiple
Absense of trust Database with multiple Trust

non-trusting writers

Disintermediation No trusted intermediaries Trusted intermediary

Transaction interaction There is a dependency Trust the intermediary to
between transactions mediate interactions

Set the rules Clear rules applied to all Different rules based on
writers roles/groups of writers

*Pick your validators Trust in the validation scheme (single entity or

democratic)
*Back your assets Translation of digital assets into the real world

*Recommendations

© UZH 2019 33

K. Wust, A. Gervais (2018)

Do you need
Lo store state?

iy

Are there
multiple

writers?

nex

Can vou use

an always
online TTP?

Wik

Are all

Writers na Permissionless
krlmlr'n-"-' Blockchain
Vs

Are all " yes Public
writers Permissioned
trusted? Blockchain
¥ no

Private
Permissioned
Blockchain

Dom't use

Based on
K. Wist, A. Gervais

© UZH 2019

Blockchain

34

K. Wulst, A. Gervais (2018) — Cont.

o Performance and scalability requirements impacts of
alternative BC solutions and data bases in comparison

Permissionless Blockchain Permissioned Blockchain Central Database
Throughput Low High Very High
Latency Slow Medium Fast
Number of readers High High High
Number of writers High Low High
Number of untrusted writers High Low 0
Consensus mechanism Mainly PoW, some PoS BFT protocols (e.g. PBFT [6]) None
Centrally managed No Yes Yes

BFT: Byzantine Fault Tolerance
PBFT: Practical Byzantine Fault Tolerance

© UZH 2019 35

Application Trade-offs
(B. Rodrigues, T. Bocek, B. Stiller, 2018)

0 Based on Blockchain characteristics:

— Performance vs Reliability

» BC offers slow throughput but more robustness than traditional DBs
— Confidentiality vs Transparency

* More transparency (trust) and less confidentiality
— Distributed vs centralized control

* No central authority (PoW) or trusted nodes (PBFT)

o Limited storage

o Unknown regulations
— Different countries, different regulations

o Lack of standards
— Blockchain 4.0 target

© UZH 2019 36

Distributed vs. Centralized Control

o Distributed control based on elected leader (e.g., POW)
o Partially based on selected leaders (e.g., POA, PBFT)

o Centralized Control based on trust (e.g., traditional
databases)

,ﬁég//’“\
: ITE S0 G
o Multiple possibilities &
. @ e.g., HyperLedger
— At the same time... o
\\\
*_7
Model | Control _ ,f
O Distributed |
/
O Partial \\\)/
AN A
O Centralized SN >

Internal management

© UZH 2019 37

Mapping Tradeoffs to Blockchain Types

I
Public : .. Private Private
.. Public Permissioned
Permissionless Permissionless Permissioned

Transparency

>
=)
=
=
fo)
o

Performance

© UZH 2019

World
visibility

Distributed due to the
election process

Full replication (light
nodes always rely on
full nodes)

Slow due the
consensus and
replication models

World
visibility

Distributed but
validators are defined
In a selection
process

Full or partial
replication (possible
to define super nodes)

Intermediate
depending on
consensus and
replication models

38

Community visibility

Distributed but
validators are defined
in a selection
process

Full or partial
replication
(possible to define
super nodes)

Intermediate
depending on
consensus and
replication models

Role-based visibility

Centralized based on
trusted nodes

Full or partial
replication (master-
slave)

Fast because its
mostly centrally
managed

Part Il - Smart Contracts

© UZH 2019

Smart Contracts

o A Smart Contract (SC) may reside inside transactions
— Executed & validated on every node upon persisting that block
e‘

* E.g., for Bitcoins (blockchain-based cryptocurrency) SCs specify S
. 202
how to withdraw, escrow, refund, or transfer BTC from A to B, 82"

e
a SCs first mentioned in 1996: o

\

A smart contract is a computerized transaction protocol that executes the terms of a contract. The
general objectives of [a] smart contract['s] design are to satisfy common contractual conditions (such
as payment terms, liens, confidentiality, and even enforcement), minimize exceptions both malicious
and accidental, and minimize the need for trusted intermediaries. Related economic goals include
lowering fraud loss, arbitrations and enforcement costs, and other transaction costs.

o Smart contracts alone are not “smart” . Szabo
— They need an infrastructure (“technology*)
— A blockchain forms the ideal, distributed basis for SCs

o The legal relevance of “coded”, more general contracts?

© UZH 2019

Ethereum/Solidity

pgagma solidity #0.4.10;
fact ontract {

SC Addréss
"Oxb50041c1599529a9f64cf2be59ffb...”

v

© UZH 2019 41

Smart Contract Best Practices

o Blockchain is a relatively new and most
Implementations are experimental

o SC programming requires a different mindset: O
— Changes are not possible once SC is deployed P —

— Cost of failures can be high (e.g., DAO) n

— Sitill.... not iImmune to vulnerabilities

0 Best practices are essential!!
— Code security, efficiency, readability, ...

N

https://consensys.github.io/smart-contract-best-practices/general_philosophy/

© UZH 2019 42

Prepare for failure

Prepare for failure
« Pause the contract when things

Rollout carefully are going wrong (‘circuit
breaker)
Keep contracts simple
SC Best Manage the amount of money
Practices Stay up to date at risk (rate limiting, maximum
@ usage)
AR Be aware of blockchain

 Have an effective upgrade path

properties _ _
for bug fixes and improvements

Fundamental trade-offs

© UZH 2019 43

Rollout Carefully

Prepare for failure

—

» Test contracts thoroughly, and
add tests whenever new attack
vectors are discovered

Rollout carefully —

Keep contracts simple

Be§t * Provide bug bounties starting
Practices | ™ Stay up to date from alpha testnet releases
N Be aware of blockchain | < Rollout in phases, with
properties increasing usage and testing in
__ each phase

Fundamental trade-offs

© UZH 2019 44

Keep Contracts Simple

Prepare for failure

* Ensure the contract logic is simple
Rollout carefully « Modularize code to keep contracts
and functions small

Keep contracts simple — « Use already-written tools or code

Best where possible
Practices Stay up to date » Prefer clarity to performance
@ whenever possible
AR Be aware of blockchain * Only use the blockchain for the
properties parts of your system that require

decentralization

Fundamental trade-offs

© UZH 2019 45

Stay Up to Date

Prepare for failure

Rollout carefully —
» Check your contracts for any
Keep contracts simple new bug as soon as it is
Best discovered
Practices Stay up to date — ¢ Upgrade to the latest version
@ of any tool or library as soon
LA Be aware of blockchain as possible _ |
properties * Adopt new security techniques
__ that appear useful

Fundamental trade-offs

© UZH 2019 46

Awareness of BC Properties

Prepare for failure
Rollout carefully

Keep contracts simple

Best
Practices Stay up to date
@\ Be aware of blockchain —

properties

Fundamental trade-offs

© UZH 2019

a7

Be extremely careful about external
contract calls, which may execute
malicious code and change control flow.
Understand that your public functions are
public, and may be called maliciously and
in any order. The private data in smart
contracts is also viewable by anyone.
Keep gas costs and the block gas limit in
mind.

Be aware that timestamps are imprecise
on a blockchain, miners can influence the
time of execution of a transaction within a
margin of several seconds.

Randomness is non-trivial on blockchain,
most approaches to random number
generation are gameable on a
blockchain.

Fundamental Trade-offs

Prepare for failure
Rollout carefully

Keep contracts simple

SC Best
Practices Stay up to date
@\ Be aware of blockchain

properties
* RIgid versus Upgradeable

Fundamental trade-offs { e Monolithic versus Modular
e Duplication versus Reuse

© UZH 2019 48

Tools for Security Visualization

Q Surya:
— Visual outputs and information about the contracts' structure.
Also supports guerying the function call graph.
o Solgraph:
— Generates a DOT graph that visualizes function control flow
and highlights potential security vulnerabillities.
o EVM Lab
— Rich tool package to interact with the EVM. Includes a VM,
Etherchain API, and a trace-viewer.
o ethereum-graph-debugger

— A graphical EVM debugger. Displays the entire program
control flow graph.

© UZH 2019 49

Smart Contract Security Examples

o Transaction Ordering
> Blockchain Shop

o Reentrancy Attacks
> Good ATM | Bad ATM

Source: James Chiang

© UZH 2019 50

Transaction Ordering

contract Store {
» price = 100;
userCredit = 120;

1. checks price

2. buys)
» Tunction buy() payable {

O
-:I //

User ¥

function setPrice() {

@ //

}

Contract Owner

© UZH 2019

Transaction Ordering

contract Store {
> price = 120;
userCredit = 120;

1. checks price

2a. buys _
» Tunction buy() payable {

O
-:I //

User ¥

2b. increases price
P function setPrice() {

@ e.g. to 120 //

}

Contract Owner

If 2b is mined before 2a, user will

overpay for purchase

© UZH 2019

Transaction Order Guard

1. checks price

contract Store {

» price = 100;

» Tunction buy(desiredPrice) {

. J 2. buy(100)
S

User

O

Contract Owner

© UZH 2019

// desiredPrice == price
// ...

}

function setPrice(newPrice) {
// price = newPrice

}

Transaction Order Guard

1. checks price

contract Store {
» price = 120;

2a. buy(100)

User

O

Contract Owner

2b. increases price

e.g.to 120

© UZH 2019

» function buy(desiredPrice) {
X // desiredPrice == price
// ...

}

function setPrice(newPrice) {
// price = newPrice
// ...

}

Smart Contract Security

o Transaction Ordering
> Blockchain Shop

0 Reentrancy Attacks
> Good ATM | Bad ATM

© UZH 2019 55

ATM Contract

ATM.withdraw(amount)

contract ATM {

mapping(addr => uint) balances;

User

msg.sender
.transfter(amount)

Oxch5fF. ..

© UZH 2019

» function withdraw() {
// checks balance
// transfer funds
// updates balances

}

Ox627. ..

Reentrancy Attack

contract BadATM { contract ATM {
== function attack() { mapping(addr => uint) balances;
// calls withdraw
. 1 function withdraw() {
S— // checks balance
- function () payable { // transfer funds
// calls withdraw again // updates balances
User // until reentrancy target }
} .
: ks
}
Oxc5T. .. Oxf1l7. .. Ox627. ..

© UZH 2019

Reentrancy Attack

contract BadATM { contract ATM {
== function attack() { mapping(addr => uint) balances;
// calls withdraw
. 1 function withdraw() {
— // checks balance
- function () payable £ | // transfer funds
// calls with oo sender.call.value(amount)() S balances
User // until reenuaicy carycc ¥
} ;
- +
+
Oxchf. .. OxFf17... Ox627. ..

© UZH 2019

Reentrancy Attack

contract BadATM { contract ATM {
== function attack() { mapping(addr => uint) balances;
// calls withdraw
. 1 function withdraw() {
— // checks balance
- function () payable £ // transfer funds
// calls withdraw again // updates balance
// until reentrancy target
User 3 Y J ¥ [balances not updated yet
i +
+
Oxchf. .. Oxf1l7. .. Ox627. ..

© UZH 2019

Reentrancy Attack

contract BadATM { contract ATM {
== function attack() { mapping(addr => uint) balances;
// calls withdraw
. 1 function withdraw() {
— // checks balance
- function () payable £ // transfer funds
// calls withdraw again // updates balances
User // until reentrancy target }
} ;
- +
+
Oxchf. .. Oxf1l7. .. Ox627. ..

© UZH 2019

Reentrancy Attack

contract BadATM { contract ATM {
== function attack() { mapping(addr => uint) balances;
// calls withdraw
. 1 function withdraw() {
— // checks balance
- function () payable { // transfer funds
// calls withdraw again // updates balances
User // until reentrancy target }
+ ~I_ ---
1 (until out of balance ATM
_ orout of gas BadATM)
Oxchf. .. Oxf1l7. .. Ox627. ..

© UZH 2019

Reentrancy Attack

User

Oxch5fF. ..

© UZH 2019

contract BadATM {

= function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}

contract ATM {
mapping(addr => uint) balances;

function withdraw() {
// checks balance
// transfer funds
// updates balance

+
r { update balance

before transfer

OxF1l7...

Ox627. ..

Contract Locks

User

Oxch5fF. ..

© UZH 2019

contract BadATM {

function attack() {
// calls withdraw

}

function () payable {
// calls withdraw again
// until reentrancy target

}

contract ATM {

enum States {
Ready,
Pending

+

function withdraw() {
// checks 1Tt ATM 1s Ready
// set ATM to Pending
// check balances & transfer

}

OxF1l7...

Ox627. ..

Contract Locks

contract BadATM { contract ATM {
enum States {
== function attack() { Ready,
// calls withdraw Pending
® | !
S— function withdraw() {
- function () payable { // checks 1Tt ATM 1s Ready
// calls withdraw again // set ATM to Pending
User // until reentrancy target // check balances & transfer
ks ks
ks ks
Oxc5T. .. Oxf1l7. .. Ox627. ..

© UZH 2019

Contract Locks

contract BadATM { contract ATM {
enum States {
== function attack() { Ready,
// calls withdraw Pending
® | !
S— function withdraw() {
- function () payable { // checks 1Tt ATM 1s Ready
// calls withdraw again // set ATM to Pending
User // until reentrancy target // check balances & transfer
ks ks
ks ks
Oxc5T. .. Oxf1l7. .. Ox627. ..

© UZH 2019

Contract Locks

contract BadATM { contract ATM {
enum States {
== function attack() { Ready,
// calls withdraw Pending
® | !
S— function withdraw() {
- function deposit() { X // checks 1f ATM is Ready
// calls withdraw again // set ATM to Pending
User // until reentrancy target // check balances & transfer
ks ks
ks ks
Oxc5T. .. Oxf1l7. .. Ox627. ..

© UZH 2019

Reentrancy Attack

User

Oxch5fF. ..

© UZH 2019

contract BadATM {

= function attack() {
// calls withdraw

}

function () payable
// calls with

}

e

[&

§ msg.sender.ca
// until reenuancy war

contract ATM {
mapping(addr => uint) balances;

function withdraw() {
// checks balance
transfer funds

ue(amount) O s balances
J

OxF1l7...

Ox627. ..

The transfer-Function

d Only a small amount of gas is sent along (21,000 gas).
d The receiver can only emit one single event at max, safe by

“accident”.
contract BadATM { contract ATM {
== function attack() { mapping(addr => uint) balances;
// calls withdraw
. 1 function withdraw() {
— // checks balance
- function () payable £ | // transfer funds
// cal!s withdrav msg.sender . transfer(amount) s balances
User // until reentrarcy carycc e
} ;
+
+

Oxch5f. .. OxF1l7... Ox627. ..

© UZH 2019

In Conclusion - Best Practices

Prepare for failure
Rollout carefully

Keep contracts simple
Stay up to date

o O O 0O O

Be aware of blockchain properties

Others

o Safe Math (Overflow)
o Error Handling (Revert / Require / Throw)
o Best Practices e.qg.

© UZH 2019

https://consensys.github.io/smart-contract-best-practices/recommendations/

Part Il - Discussion and
Considerations

© UZH 2019

Overview of Blockchain Challenges

— How to handle reliably tangible (non-digital) assets in BC?

» A Bitcoin is represented as bits vs. property, real estate as physical items
— Sustainabllity: of consensus mechanisms?

« Energy consumption for Bitcoin BC alone in 2017 = Iceland‘s production
— Scalability: BC throughput as a number of

, persisted in Mega (?) bytes, ?

* E.g., BC sizes grow faster than the density of HDDs/SSDs

« BC (always) better than a (distributed) data base”? Exorbitant costs?
— ldentity management (users, objects) and anonymity
— Standardized APIs for switching BCs for BC-based dapps

* E.g., In contrast, databases from different vendors offer “similar” APIs
— Many economic effects of BC-based cryptocurrencies unknown

* Role of : of about 2000+ cryptoc.
— Legal/regulative compliance, societal/governmental acceptance

71

© UZH 2019

Mapping Challenges (1)

Public Public Private Private
Permissionless Permissioned Permissionless Permissioned

Public usage — size Only selected nodes Blockchain designed for Blockchain designed

Scalability

Data Storage

Sustainability

ldentity
Management

© UZH 2019

growth hard to be
controlled

Not designed as DB
— High fees, size is
limited

PoW —
computational power
has no “social
benefit”

Pseudo-anonymity,
data visible — Hard to
link to physical user,

data encryption

create blocks — more
control over size

Know writers — No
fees, no size limit

PoA — Sustainable,
no significant
computations

Data is supposed to
be visible —
Ensuring integrity

72

specific use case —
controlled size

Know participants —
Low fees, partial size
limit

PoS — Sustainable,
no significant
computations

Know participants —
Trusted environment

for specific use case
— controlled size

Know writers — No
fees, no size limit

PoA — Sustainable,
no significant
computations

Know participants —
Trusted environment

Mapping Challenges (2)

No standard —
Complex
Interoperability

Data in the BC —
Trusted
Input data — Untrusted

Standardization

Economics and
Regulations

No clear regulations —
Gray area

© UZH 2019

No standard —
Complex
Interoperability

Know writers —
Trusted

No clear regulations
— Gray area

73

No standard —
Complex
Interoperability

Know participants —
Trusted Environment

Regulated by
participants — Defined
rules

Public Public Private Private
Permissionless Permissioned Permissionless Permissioned

No standard —
Complex
Interoperability

Know participants —
Trusted Environment

Regulated by
participants — Defined
rules

Public Blockchain Risks

o BCs’ depends on the input received!
o BCs’ security, privacy, and reliability
(& 51% attack), iIn SCs
« Alternative beyond PoW? Security at stake?
— The of currently used security algorithms
* Long-term storage? Quantum Computing impacts?
— Privacy: ? GDPR?

— The right to forget vs. immutability
— Transparency (public knowledge of BC) vs. privacy (private data)

0 Networking infrastructure’s reliability (critical infrastructures)
« Lacking Internet connectivity for a “longer” period of time?

o Economic/legal risks (cryptocurrency/tokens/coins, BC)

« Fraudulent profitability projections, volatility, dispute resolutions
© UZH 2019 74

Conclusions

1. Blockchains do show a logical evolution of linked lists,

however, they “exaggerate” processing demands
— Especially Proof-of-Work (PoW), but this ensures immutability

2. The technical future of blockchains is based on
security ingredients of today’s technology, however,
long-term storage and security management Is not
known by now
— E.qg., unknown impact of Quantum computing (on all IT!)

3. Blockchains are no revolution, but a typical Computer

Science (Abstract Data Type) evolution of linked lists
— The “distribution” of consensus does not always make sense

— Any system as of the past has not been replaced fully by a
BC

© UZH 2019 75

Thank you for your attention.

2

Questions?

© UZH 2019

	Blockchain and Smart Contracts – From Theory to Practice
	Schedule
	Part I – Blockchain Motivation
	Blockchain 1.0
	Blockchain 2.0
	Blockchain 3.0
	Blockchain 4.0
	Blockchain Eras and Evolution
	Driving Questions
	Blockchain (BC) Basics
	Definition
	Permissions and Transparency
	Block
	Integrity, Merkle Tree
	Transactions
	Blockchain Consensus
	Mechanisms for Distributed Agreement
	Overview
	Classical Consensus Mechanisms (1)
	Byzantine Fault Tolerance (BFT)
	Classical Consensus Mechanisms (2)
	Proof-of-Work (PoW)
	Hash-based PoW (1)
	Proof-of-Stake – PoS (1)
	Proof-of-Stake – PoS (2)
	Proof-of-Authority (PoA)
	Hybrid Consensus
	Hybrid Sharding
	Comparison of Consensus Mechanisms
	Blockchain Adoption
	Choosing a Blockchain
	Deployment Models
	G. Greenspan (2015)
	K. Wüst, A. Gervais (2018)
	K. Wüst, A. Gervais (2018) – Cont.
	Application Trade-offs�(B. Rodrigues, T. Bocek, B. Stiller, 2018)
	Distributed vs. Centralized Control
	Mapping Tradeoffs to Blockchain Types
	Part II - Smart Contracts
	Smart Contracts
	Ethereum/Solidity
	Smart Contract Best Practices
	Prepare for failure
	Rollout Carefully
	Keep Contracts Simple
	Stay Up to Date
	Awareness of BC Properties
	Fundamental Trade-offs
	Tools for Security Visualization
	Smart Contract Security Examples
	Transaction Ordering
	Transaction Ordering
	Transaction Order Guard
	Transaction Order Guard
	Smart Contract Security
	ATM Contract
	Reentrancy Attack
	Reentrancy Attack
	Reentrancy Attack
	Reentrancy Attack
	Reentrancy Attack
	Reentrancy Attack
	Contract Locks
	Contract Locks
	Contract Locks
	Contract Locks
	Reentrancy Attack
	The transfer-Function
	In Conclusion - Best Practices
	Part III - Discussion and Considerations
	Overview of Blockchain Challenges
	Mapping Challenges (1)
	Mapping Challenges (2)
	Public Blockchain Risks
	Conclusions
	Thank you for your attention.

