FastTrust: Fast and Anonymous Spatial-Temporal Trust for Connected Cars on Expressways

Chen Lyu*+, Amit Pande, Yuanyuan Zhang+, Dawu Gu+, Prasant Mohapatra

*Shanghai University of Finance and Economics, Shanghai, China

+Shanghai Jiao Tong University, Shanghai, China

University of California, Davis, CA

- Introduction
- Our proposed FastTrust Mechanism
- Security Analysis
- Performance Evaluation
- Conclusion

- Introduction
- Our proposed FastTrust Mechanism
- Security Analysis
- Performance Evaluation
- Conclusion

Motivation

 An increasing trend of connected cars or connected vehicles due to their potential in enhancing users' safety and convenience

- Two applications of connected cars :
 - Forward Collision Warning (FCW)
 - Intersection Collision Warning (ICW)

Motivation

- Security problem of frequent STMs (i.e., 10 Hz):
 - STMs may be broadcast by invalid cars or modified during connections-broadcast authentication
 - Frequently exchanging STMs among cars reveal a lot of personal information -privacy preserving scheme
- Broadcast authentication: IEEE 1609.2 security standard suggests using ECDSA algorithm
 - Using ECDSA algorithm is vulnerable to signature flooding attack
 - a fast and low-cost broadcast authentication is mandatory for an STM-broadcast system
- Privacy-preserving scheme:
 - a solution to preserve cars' location privacy and anonymity
 - there is an inherent conflict between fast broadcast authentication and privacy.

Objective

- In this work, we propose a Fast and Anonymous Spatial-Temporal Trust (FastTrust)
 mechanism, trying to address the problem of "fast broadcast authentication with privacy"
 for fast-moving cars.
- No additional third parties, i.e, infrastructures or cars, are required to be involved in our system.
- FastTrust provides security and privacy protection of STMs
 - Fast verification
 - Non-repudiation
 - Packet loss resilience
 - Anonymity
 - Unlinkability

Related Work

Efficient broadcast authentication

- Car-to-roadside connections (expensive public-key cryptographic ops)
 - Identity-based batch verification (Zhang et al., Huang et al.)
 - Aggregate signature (Jiang et al.)
- Car-to-car connections (symmetric cryptographic ops)
 - TESLA authentication scheme: TESLA, VAST++ (Perrig et al., Studer et al.)
 - Delayed verification
 - One-time signature (Hsiao et al.)
 - Vulnerable to packet losses

Location privacy and anonymity

Silence Periods, Pseudonyms and Group Signature

None of these solutions considered to achieve the two requirements during car-to-car connections.

- Introduction
- Our proposed FastTrust Mechanism
- Security Analysis
- Performance Evaluation
- Conclusion

Protocol Overview

- Pseudonym-Varying Scheduling Scheme
- Fast Broadcast Authentication Protocol
 - Sender
 - 1. protection interval setup
 - 2. prediction table construction
 - 3. entropy-based commitment generation
 - 4. STM broadcast
 - Receiver
 - 5. STM verification

1. Protection Interval Setup

- Sender divides the timeline into a number of protection intervals
 - Each protection interval includes a sequence of STM events B₁, B₂,..., B_n
- Pseudonym (e.g., *PDq*) and the length of protection interval *n* are determined by our privacy-preserving scheme.
- TESLA framework: generating n chained private keys for signing and a public verification key TK₀

TK_{K-1}

- Keys disclosed one time intervals after use
- TESLA signature of m_K: MAC(TK_K, m_k)

Delayed Authentication?

2. Prediction Table Construction

- An STM's information except position is almost deterministic.
- Sender predicts its own movements
- Narrow down possible movements for efficiency
 - sender's speed limits
 - e.g., slower than 180km per hour->can not move >5m per 0.1s
 - sender's mode of movement
 - e.g., mostly go along the road rather than making a U-turn

The entropy of two subsequent STMs is relatively low

3. Entropy-based Commitment Generation

 CT_k : the commitment for all the possible results in Prediction Table with Huffman Hash Trees(HHT)

Prediction Table Wk

Pr
0.40
0.25
0.20
0.10
0.05

We construct the commitment to achieve instant verification!

4. STM broadcast

5. STM verification

Receiver:

Check the Cert.

Verify ECDSA Sign.

Non-repudiation

Verify TK_0 Compute CT'_1 , and verify if $CT_1 = CT'_1$ $L_1 = L_0 + M_1(I)$

Verify if $TK_1 = F(TK_0)$ Verify TESLA Sign. Compute CT'_2 , and verify if $CT_2 = CT'_2$ $L_2 = L_1 + M_2(f)$

Pseudonym-Varying Scheduling Scheme

Pseudonym

- Pseudonyms are varied in the order of PD_1 , PD_2 , ..., PD_r circularly.
- Generating *z* distinct parameters for these pseudonyms, such that $\lambda = \sum_{q=0}^{z} \lambda_q$
- For each pseudonym PD_q , a car determines the length of a protection interval n, which follows the **Poisson distribution** with λ_q

Silent Period

The beginning time of a protection interval is delayed a silent period.

- Introduction
- Our proposed FastTrust Mechanism
- Security Analysis
- Performance Evaluation
- Conclusion

Security Analysis

- Proposition 1: FastTrust provides a negligible probability that a valid authenticated message could be forged by an attacker
- Proposition 2: A car cannot repudiate his own STM broadcast.
- Proposition 3: A car can verify STMs in presence of packet losses.
- Proposition 4: A car cannot obtain another car's real identity information.
- Proposition 5: A car cannot link multiple pseudonyms of another car used in different protection intervals.

- Introduction
- Our proposed FastTrust Mechanism
- Security Analysis
- Performance Evaluation
- Conclusion

Privacy Evaluation

- Each car is equipped with z pairs of 256-bit public/private keys.
- We use a Poisson distribution with parameter λ to determine when we change these pseudonyms.

Parameter	Value
Poisson parameter λ	1000
Standard deviation δ	30
Number of pseudonyms z	10
Number of STM events	10000
Length of STM interval $ I_B $	100 ms

In the simulation, 30 cars broadcast STMs every 100 ms

Parameter	Value	Parameter	Value
Hash, MAC operation	$1 \mu s$	Hash, MAC size	20 Bytes
ECDSA generation	7 ms	ECDSA verification	22 ms
ECDSA key size	32 Bytes	STM size	328 Bytes
STM's lifetime	1 s	Number of cars	30
Packet loss rate p	0.3		

Communication Overhead

Fig. 10. The communication overhead of HHT and MHT compared to ECDSA.

Impact of Privacy:

Fig. 11. Signature generation time and signature verification time with different privacy parameters.

Impact of Packet Loss:

Fig. 12. Impact of packet losses on FastTrust.

We compare FastTrust with ECDSA and TESLA under different p
 and car density

Fig. 13. Performance comparison.

- Introduction
- Our proposed FastTrust Mechanism
- Security Analysis
- Performance Evaluation
- Conclusion

Conclusion

- In this work, we propose FastTrust to address the problem of "fast broadcast authentication with privacy".
- First, we design a fast broadcast authentication protocol based on symmetric key cryptography to mitigate signature flooding attack.
- To provide real-time and faster authentication, an entropy-based commitment is constructed with the structure of HHT in our protocol.
- We develop a pseudonym-varying scheduling scheme to protect users' privacy while also supporting fast broadcast authentication.
- Our simulation results indicate that FastTrust could achieve a high privacy preserving rate, and fast authenticate STMs with low computational and communication cost.

Thank you!

Email: lyu.chen@sufe.edu.cn