

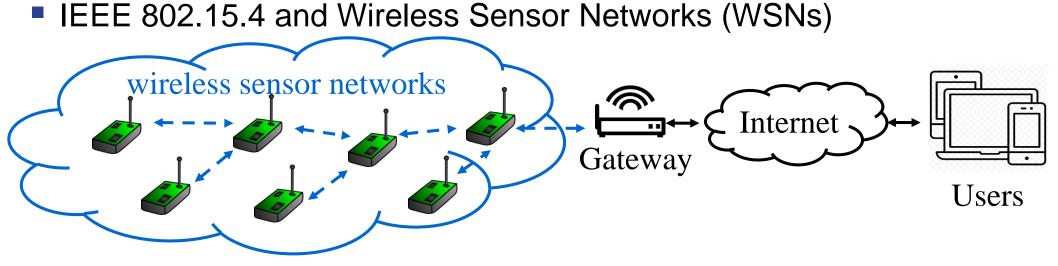
University of Duisburg-Essen

Networked Embedded Systems Group Institute for Computer Science and Business Information Systems (ICB) Schützenbahn 70 D-45127 Essen, Germany

An Approach to Detect Anomalous Degradation in Signal Strength of IEEE 802.15.4 Links

<u>Songwei Fu</u>¹, Matteo Ceriotti¹, Yuming Jiang², Chia-Yen Shih¹, Xintao Huan¹, Pedro José Marrón¹

¹University of Duisburg-Essen, Germany


²Norwegian University of Science and Technology (NTNU), Norway

Outline

- Background & Motivation
- The Approach
 - Overview
 - Major system components
- Evaluation
- Conclusion

Background & Motivation

- Demanding QoS requirements VS. Actual performance
- One major cause
 - The performance of 802.15.4 links can be easily affected by the surrounding environment (terrain, climate, human activities, etc.)
- Detection of Link Quality Degradation is crucial for taking remedial actions at different stack layers.

Goal

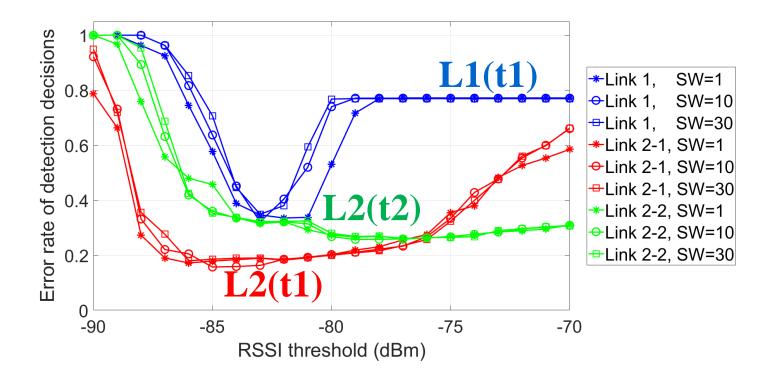
- We use Received Signal Strength (RSSI) why not loss rate?
 - RSSI direct measurement of the channel at the radio hardware
- Terminology
 - Good link vs. Bad link
 - Anomalous RSSI Degradation
 - Error rate
 - False Positive Rate (FPR):

The ratio of detecting anomalous RSSI degradations while good link

False Negative rate (FNR):

The ratio of missing to detect the anomalous RSSI degradations

- Goal
 - design an approach to detect anomalous RSSI degradation of 15.4 links


Requirements

- Functional Requirements
 - Low error rate
 - Previous studies show that RSSI is not well correlated with Packet Reception Rate (PRR)
- Non-functional Requirements
 - The low error rate should be consistent for all links
 - i.e. No need of manually tuning for each link
 - The low error rate should be robust over time
 - i.e. Adapt to environmental changes
 - Lightweight due to resource-constrained sensor nodes
 - i.e. No ML techniques: Clustering, SVM, NN etc.

Intuitive Approach

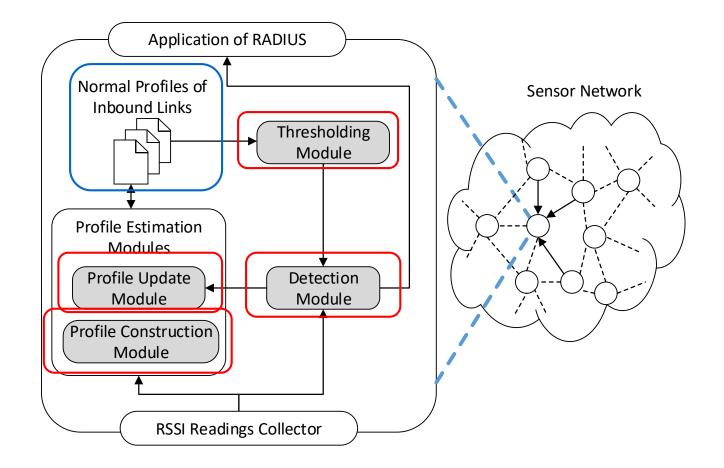
- Initial try: Data Smoothing + Fixed RSSI Threshold
- Results based on data traces

Reasons and implications

Networked Embedded Systems Group University of Duisburg-Essen

Our Approach: RADIUS

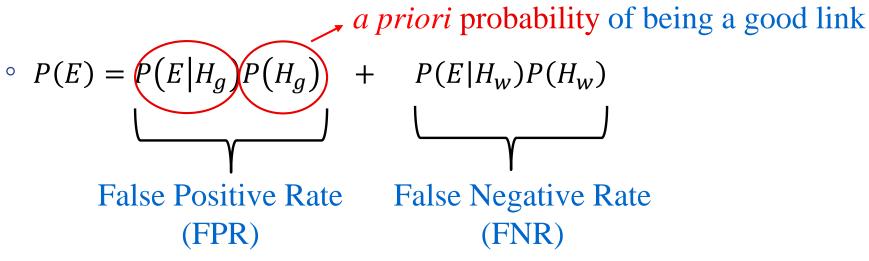
RADIUS


 a lightweight yet accurate and robust approach to detect locally at sensor nodes the anomalous RSSI degradation of inbound radio links

Core features

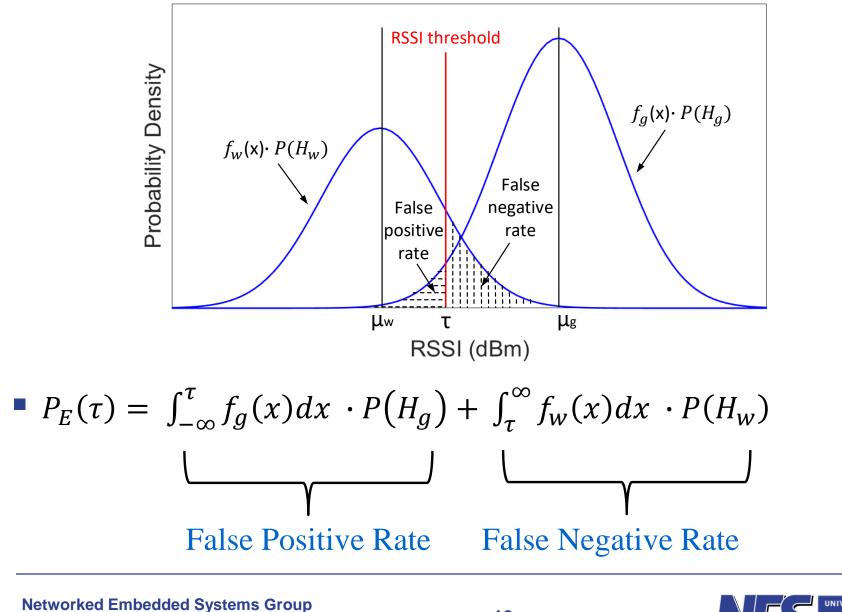
- A thresholding method computing RSSI thresholds tailored to each link
- The optimal thresholds are computed based on Bayesian decision theory
- Threshold adapts to environmental changes
- Low overhead (computation, memory, communication)

System Overview



- 2-phase operations
 - ° (1) Offline, (2) Online

RSSI Thresholding: The Bayes Threshold (1)


- The goal the module is to compute RSSI thd. that minimizes error rate
- Problem formulation
 - Let H_g and H_w denote a link being a good link and a bad link

- Assumption
 - RSSI follows a normal distribution $N(\mu, \sigma)$
 - RSSI distribution of good and bad link have different μ but similar σ

RSSI Thresholding: The Bayes Threshold (2)

University of Duisburg-Essen

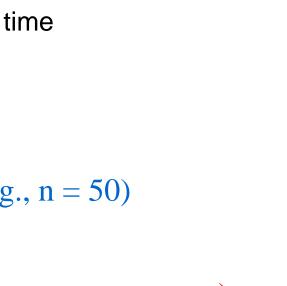
RSSI Thresholding: The Bayes Threshold (3)

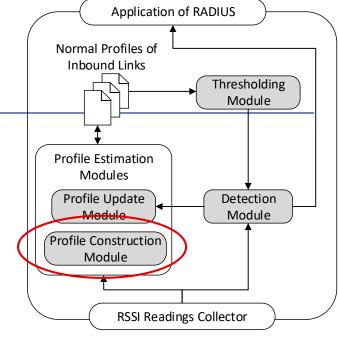
Minimize P_E(τ) by letting
$$\frac{d (P_E(τ))}{dτ} = 0$$
a priori probability of being a good link
T_{Bayes} =
$$\frac{1}{2}(\mu_g + \mu_w) + \frac{\sigma^2 \ln(P(H_g)/P(H_w))}{\mu_g - \mu_w}$$
RSSI mean of good link and bad link

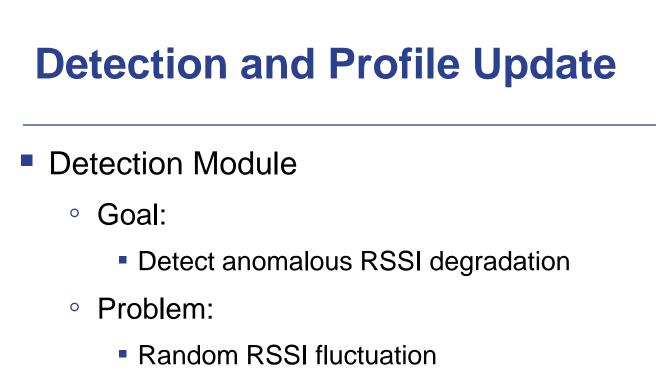
- $P(H_g)$ User-defined thresholding parameter
- $\circ \mu_w$ border value of the transitional zone (e.g., -89 dBm)
- ° (μ_g , σ) Normal Profile

Normal Profile Construction

- Profile Construction
 - $^{\circ}\,$ Goal: estimate RSSI μ_g and σ when links are good links
 - Problem: How many RSSI samples are needed?
 - Trade-off between estimation accuracy and training time
 - The number may differ from link to link
 - Solution based on *Central Limit Theorem*:

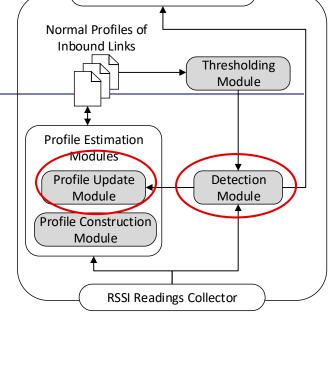

RSSI std. of first n packets (e.g., n = 50)


Estimated error of RSSI mean (system parameter)

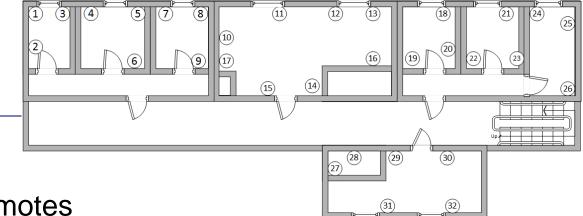

• *N* =

Z-score

 E_{μ}



- Solution:
 - Data smoothing over a sliding window
- Profile Update Module
 - Problem:
 - When environmental changes, normal profile changes
 - Solution:
 - Update (μ_g, σ) of each link based on detection decision


13

Application of RADIUS

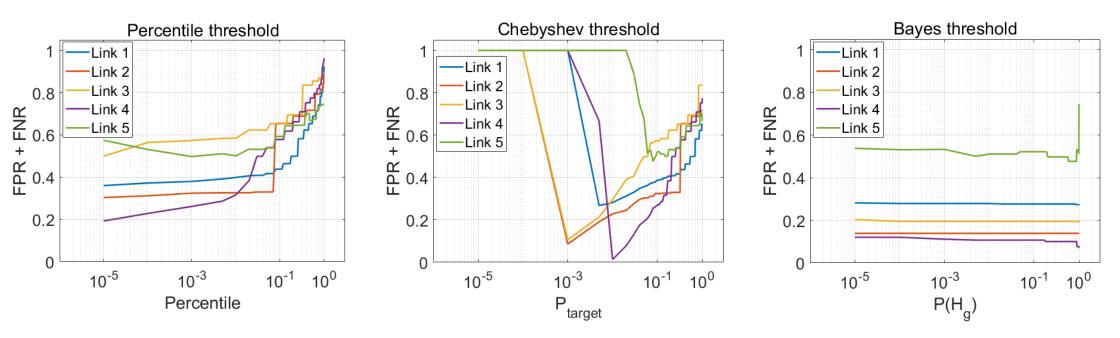
Evaluation

- Testbed Setup
 - Indoor testbed of 32 TelosB motes
 - TinyOS 2.1.2
- Evaluation
 - Bayes threshold vs. 2 other thresholding methods
 - 72-hour experiment to evaluate the whole system
 - An application of RADIUS

Comparison of Thresholding Methods (1)

- Relevant statistical thresholding methods
 - Percentile-based threshold
 - User-defined parameter: x-th percentile
 - Chebyshev inequality-based threshold

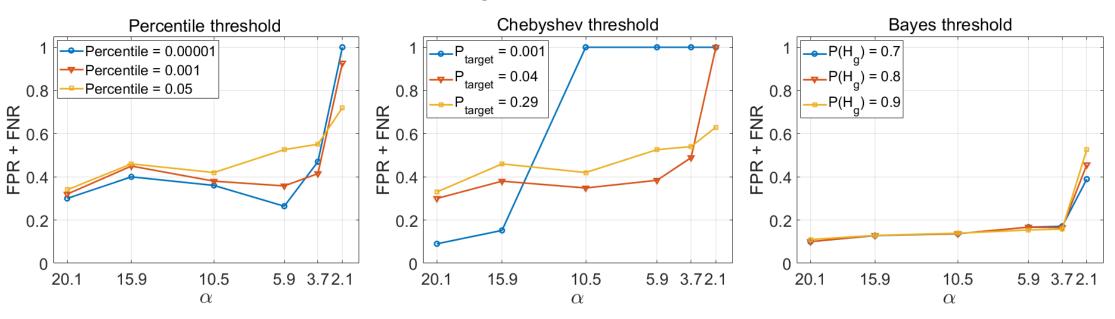
•
$$T_{cheby} = \mu_g + \sigma \cdot \sqrt{\frac{1 - P_{target}}{P_{target}}}$$


User-defined parameter: P_{target}

- Comparison perspective:
 - (1) Impact of thresholding parameter
 - (2) What if the RSSI distribution of a good link and a bad link overlaps

Comparison of Thresholding Methods (2)

Impact of thresholding parameters

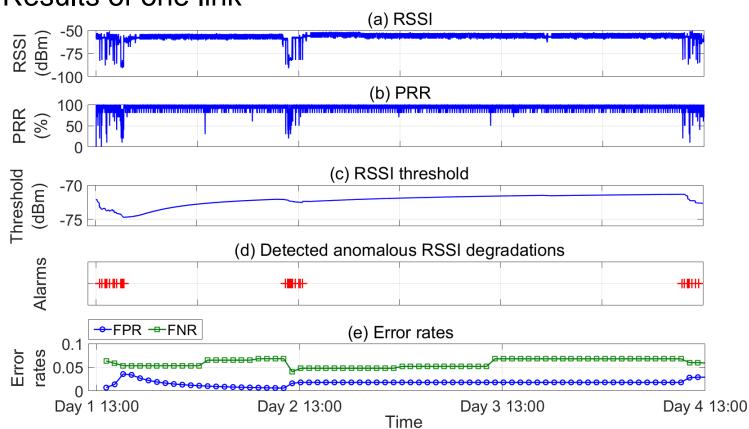


- Bayes threshold
 - Less sensitive to its thresholding parameter
 - Near-optimal accuracy with a coarse parameter setting

Comparison of Thresholding Methods (3)

When RSSI distributions of good link and bad overlaps

• Overlapping level is indicated by $\alpha = \frac{\mu_g - \mu_w}{2\sigma}$


Overhead

Techniques	RAM (bytes)	ROM (bytes)	Computation (ms)
Percentile	66	2850	8.3
Chebyshev	66	3052	8.9
Bayes	68	4688	10

Networked Embedded Systems Group University of Duisburg-Essen

Evaluation of the Overall System

72-hour experiments with whole system (Bayes threshold + update)

Results of one link

• Average error rate of all links: 5.78%

Networked Embedded Systems Group University of Duisburg-Essen

Application of RADIUS

- Applicability
 - Inbound links
 - Not limited to a specific communication topology (e.g. Tree, Mesh)
 - Not limited to a specific MAC protocol (e.g. TDMA, CSMA)
 - Performance degrades when excessive packet losses (disconnected link)
 - With modification, it can work with dynamic routing protocol
- An exemplary application
 - RADIUS-assisted Tx-Power tuning vs. Literature[1]-based approach

Schemes	Avg. PRR	Avg. Energy (µJ/bit)
CTP + medium Tx-power	78.2%	0.55
CTP + literature-based tuning	81.4%	0.61
CTP + RADIUS-assisted tuning	89.1%	0.63

Conclusions

RADIUS:

- a lightweight yet accurate and robust approach to detect anomalous RSSI degradation for 802.15.4 links
 - based on a Bayes thresholding scheme and threshold adaptation
 - no need of tuning for each link or over time
- considered as a good trigger to perform remedial actions to deal with link packet losses due to degraded channel quality

Ongoing work

 Investigate how a multi-layer parameter tuning scheme [2] can benefit from RADIUS

References

- [1] Lin, S., Miao, F., Zhang, J., Zhou, G., Gu, L., He, T., ... Pappas, G. J. . ATPC: Adaptive transmission power control for wireless sensor networks. ACM Transactions on Sensor Networks, 2016
- [2] <u>S. Fu</u>, Y. Zhang, Y. Jiang, C. Hu, C. Y. Shih and P. J. Marrón, "Experimental Study for Multi-layer Parameter Configuration of WSN Links," in Proc. of ICDCS, 2015.

Thank you for your attention!

